File size: 41,005 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
"""
Persistent Multi-Agent Integration
Integrates persistent cognitive system with existing agent framework

Author: Cyber-LLM Development Team  
Date: August 6, 2025
Version: 2.0.0
"""

import asyncio
import logging
import json
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Set, Union
from dataclasses import dataclass, field
from pathlib import Path
import uuid

# Import existing agents
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))

from agents.recon_agent import ReconAgent
from agents.c2_agent import C2Agent
from agents.post_exploit_agent import PostExploitAgent
from agents.safety_agent import SafetyAgent
from agents.explainability_agent import ExplainabilityAgent
from ..agents.orchestrator import Orchestrator

# Import our persistent systems
from cognitive.persistent_reasoning_system import (
    PersistentCognitiveSystem, MemoryEntry, MemoryType, 
    ReasoningType, StrategicPlan, ReasoningChain
)
from server.persistent_agent_server import PersistentAgentServer, create_server_config

@dataclass
class AgentMemoryProfile:
    """Memory profile for each agent type"""
    agent_id: str
    agent_type: str
    primary_memory_types: List[MemoryType] = field(default_factory=list)
    reasoning_preferences: List[ReasoningType] = field(default_factory=list)
    strategic_capabilities: List[str] = field(default_factory=list)
    memory_retention_policy: Dict[str, Any] = field(default_factory=dict)
    knowledge_domains: Set[str] = field(default_factory=set)

@dataclass
class CognitiveAgentState:
    """Enhanced agent state with cognitive capabilities"""
    agent_id: str
    base_agent: Any
    memory_profile: AgentMemoryProfile
    cognitive_session_id: str
    active_reasoning_chains: List[str] = field(default_factory=list)
    strategic_plans: List[str] = field(default_factory=list)
    memory_consolidation_schedule: Optional[datetime] = None
    last_cognitive_update: datetime = field(default_factory=datetime.now)
    cognitive_metrics: Dict[str, Any] = field(default_factory=dict)

class PersistentMultiAgentSystem:
    """
    Enhanced multi-agent system with persistent cognitive capabilities
    """
    
    def __init__(self, 
                 cognitive_db_path: str = "data/cognitive_system.db",
                 server_config: Optional[Any] = None):
        
        self.cognitive_system = PersistentCognitiveSystem(cognitive_db_path)
        self.logger = logging.getLogger("persistent_multi_agent")
        
        # Agent registry with cognitive enhancement
        self.cognitive_agents: Dict[str, CognitiveAgentState] = {}
        self.agent_profiles: Dict[str, AgentMemoryProfile] = {}
        
        # Original orchestrator integration
        self.orchestrator = None
        self.base_agents = {}
        
        # Server integration
        self.server = None
        if server_config:
            self.server = PersistentAgentServer(server_config)
        
        # Cognitive coordination
        self.global_memory_graph = {}
        self.inter_agent_reasoning_chains = {}
        self.collaborative_strategic_plans = {}
        
        # Initialize system
        self._initialize_agent_profiles()
        
        # Background processes
        self.cognitive_tasks = []
        self.system_running = False
    
    def _initialize_agent_profiles(self):
        """Initialize memory profiles for each agent type"""
        
        # Reconnaissance Agent Profile
        self.agent_profiles["recon"] = AgentMemoryProfile(
            agent_id="recon",
            agent_type="reconnaissance",
            primary_memory_types=[
                MemoryType.EPISODIC,    # Target discovery events
                MemoryType.SEMANTIC,    # Network knowledge
                MemoryType.PROCEDURAL   # Scanning techniques
            ],
            reasoning_preferences=[
                ReasoningType.DEDUCTIVE,    # Network analysis
                ReasoningType.INDUCTIVE,    # Pattern recognition
                ReasoningType.ANALOGICAL    # Similar network patterns
            ],
            strategic_capabilities=[
                "network_mapping",
                "vulnerability_discovery", 
                "target_prioritization"
            ],
            memory_retention_policy={
                "target_info_retention": 90,  # days
                "scan_results_retention": 30,
                "technique_learning_retention": 365
            },
            knowledge_domains={
                "network_protocols", "vulnerability_databases",
                "scanning_techniques", "target_profiling"
            }
        )
        
        # Command & Control Agent Profile  
        self.agent_profiles["c2"] = AgentMemoryProfile(
            agent_id="c2",
            agent_type="command_control",
            primary_memory_types=[
                MemoryType.EPISODIC,    # Command history
                MemoryType.WORKING,     # Active sessions
                MemoryType.PROCEDURAL   # C2 techniques
            ],
            reasoning_preferences=[
                ReasoningType.STRATEGIC,     # Mission planning
                ReasoningType.CAUSAL,        # Command effects
                ReasoningType.COUNTERFACTUAL # Alternative approaches
            ],
            strategic_capabilities=[
                "session_management",
                "payload_delivery",
                "persistence_mechanisms"
            ],
            memory_retention_policy={
                "session_logs_retention": 365,
                "command_history_retention": 180,
                "technique_effectiveness_retention": 730
            },
            knowledge_domains={
                "c2_protocols", "payload_types", "persistence_methods",
                "evasion_techniques", "communication_channels"
            }
        )
        
        # Post-Exploitation Agent Profile
        self.agent_profiles["post_exploit"] = AgentMemoryProfile(
            agent_id="post_exploit", 
            agent_type="post_exploitation",
            primary_memory_types=[
                MemoryType.EPISODIC,    # Exploitation events
                MemoryType.SEMANTIC,    # System knowledge
                MemoryType.STRATEGIC    # Long-term objectives
            ],
            reasoning_preferences=[
                ReasoningType.DEDUCTIVE,     # System analysis
                ReasoningType.STRATEGIC,     # Privilege escalation planning
                ReasoningType.META_COGNITIVE # Technique adaptation
            ],
            strategic_capabilities=[
                "privilege_escalation",
                "lateral_movement", 
                "data_extraction"
            ],
            memory_retention_policy={
                "system_mapping_retention": 180,
                "credential_retention": 365,
                "technique_success_retention": 730
            },
            knowledge_domains={
                "operating_systems", "privilege_escalation", 
                "lateral_movement", "data_exfiltration", "steganography"
            }
        )
        
        # Safety Agent Profile
        self.agent_profiles["safety"] = AgentMemoryProfile(
            agent_id="safety",
            agent_type="safety_monitor",
            primary_memory_types=[
                MemoryType.EPISODIC,    # Safety violations
                MemoryType.SEMANTIC,    # Safety rules
                MemoryType.WORKING      # Active monitoring
            ],
            reasoning_preferences=[
                ReasoningType.DEDUCTIVE,     # Rule application
                ReasoningType.CAUSAL,        # Impact analysis  
                ReasoningType.COUNTERFACTUAL # Risk scenarios
            ],
            strategic_capabilities=[
                "risk_assessment",
                "intervention_planning",
                "compliance_monitoring"
            ],
            memory_retention_policy={
                "safety_violations_retention": 2555,  # 7 years
                "rule_updates_retention": 1825,       # 5 years
                "intervention_logs_retention": 730    # 2 years
            },
            knowledge_domains={
                "safety_regulations", "risk_assessment", "compliance_frameworks",
                "incident_response", "legal_requirements"
            }
        )
        
        # Explainability Agent Profile
        self.agent_profiles["explainability"] = AgentMemoryProfile(
            agent_id="explainability",
            agent_type="explainability",
            primary_memory_types=[
                MemoryType.EPISODIC,    # Decision events
                MemoryType.SEMANTIC,    # Explanation patterns
                MemoryType.META_MEMORY  # Reasoning about reasoning
            ],
            reasoning_preferences=[
                ReasoningType.META_COGNITIVE, # Reasoning analysis
                ReasoningType.ANALOGICAL,     # Example-based explanations
                ReasoningType.ABDUCTIVE       # Best explanation inference
            ],
            strategic_capabilities=[
                "decision_tracing",
                "explanation_generation",
                "transparency_reporting"
            ],
            memory_retention_policy={
                "decision_traces_retention": 365,
                "explanation_templates_retention": 730,
                "transparency_logs_retention": 1095
            },
            knowledge_domains={
                "decision_analysis", "explanation_theory", "transparency_methods",
                "audit_trails", "interpretability_techniques"
            }
        )
        
        self.logger.info(f"Initialized {len(self.agent_profiles)} agent profiles")
    
    async def initialize_system(self):
        """Initialize the persistent multi-agent system"""
        
        try:
            self.system_running = True
            
            # Initialize cognitive system
            await self.cognitive_system.initialize()
            
            # Create base agents
            await self._create_base_agents()
            
            # Enhance agents with cognitive capabilities
            await self._enhance_agents_with_cognition()
            
            # Start cognitive background processes
            self._start_cognitive_processes()
            
            # Initialize orchestrator with cognitive enhancement
            await self._initialize_cognitive_orchestrator()
            
            # Start server if configured
            if self.server:
                asyncio.create_task(self.server.start_server())
            
            self.logger.info("Persistent multi-agent system initialized")
            
        except Exception as e:
            self.logger.error(f"Error initializing system: {e}")
            raise
    
    async def _create_base_agents(self):
        """Create base agent instances"""
        
        try:
            # Create standard agents
            self.base_agents["recon"] = ReconAgent()
            self.base_agents["c2"] = C2Agent()  
            self.base_agents["post_exploit"] = PostExploitAgent()
            self.base_agents["safety"] = SafetyAgent()
            self.base_agents["explainability"] = ExplainabilityAgent()
            
            self.logger.info(f"Created {len(self.base_agents)} base agents")
            
        except Exception as e:
            self.logger.error(f"Error creating base agents: {e}")
            raise
    
    async def _enhance_agents_with_cognition(self):
        """Enhance base agents with persistent cognitive capabilities"""
        
        try:
            for agent_id, base_agent in self.base_agents.items():
                
                # Get memory profile
                profile = self.agent_profiles.get(agent_id)
                if not profile:
                    self.logger.warning(f"No memory profile found for {agent_id}")
                    continue
                
                # Create cognitive session
                cognitive_session_id = str(uuid.uuid4())
                
                # Initialize agent memories
                await self._initialize_agent_memories(profile)
                
                # Create cognitive agent state
                cognitive_state = CognitiveAgentState(
                    agent_id=agent_id,
                    base_agent=base_agent,
                    memory_profile=profile,
                    cognitive_session_id=cognitive_session_id,
                    memory_consolidation_schedule=datetime.now() + timedelta(hours=6)
                )
                
                self.cognitive_agents[agent_id] = cognitive_state
                
                # Enhance base agent with cognitive methods
                await self._inject_cognitive_methods(base_agent, cognitive_state)
                
                self.logger.info(f"Enhanced {agent_id} agent with cognitive capabilities")
            
        except Exception as e:
            self.logger.error(f"Error enhancing agents: {e}")
            raise
    
    async def _initialize_agent_memories(self, profile: AgentMemoryProfile):
        """Initialize memories for an agent based on its profile"""
        
        try:
            # Create initial semantic memories for knowledge domains
            for domain in profile.knowledge_domains:
                memory_entry = MemoryEntry(
                    memory_type=MemoryType.SEMANTIC,
                    content={
                        "domain": domain,
                        "agent_id": profile.agent_id,
                        "knowledge_base": f"Initialized knowledge base for {domain}",
                        "expertise_level": "basic",
                        "last_updated": datetime.now().isoformat()
                    },
                    importance=0.8,
                    tags={f"agent:{profile.agent_id}", f"domain:{domain}", "initialization"}
                )
                
                await self.cognitive_system.memory_manager.store_memory(memory_entry)
            
            # Create procedural memories for capabilities
            for capability in profile.strategic_capabilities:
                memory_entry = MemoryEntry(
                    memory_type=MemoryType.PROCEDURAL,
                    content={
                        "capability": capability,
                        "agent_id": profile.agent_id,
                        "procedure_steps": f"Standard procedure for {capability}",
                        "success_rate": 0.0,
                        "last_used": None
                    },
                    importance=0.7,
                    tags={f"agent:{profile.agent_id}", f"capability:{capability}", "procedure"}
                )
                
                await self.cognitive_system.memory_manager.store_memory(memory_entry)
            
            self.logger.debug(f"Initialized memories for agent {profile.agent_id}")
            
        except Exception as e:
            self.logger.error(f"Error initializing memories for {profile.agent_id}: {e}")
    
    async def _inject_cognitive_methods(self, base_agent: Any, cognitive_state: CognitiveAgentState):
        """Inject cognitive methods into base agent"""
        
        try:
            agent_id = cognitive_state.agent_id
            
            # Inject memory methods
            async def remember(content: Dict[str, Any], 
                             memory_type: MemoryType = MemoryType.EPISODIC,
                             importance: float = 0.5,
                             tags: Set[str] = None) -> str:
                """Enhanced memory storage method"""
                
                if tags is None:
                    tags = set()
                tags.add(f"agent:{agent_id}")
                
                memory_entry = MemoryEntry(
                    memory_type=memory_type,
                    content=content,
                    importance=importance,
                    tags=tags
                )
                
                memory_id = await self.cognitive_system.memory_manager.store_memory(memory_entry)
                
                # Update agent metrics
                cognitive_state.cognitive_metrics.setdefault("memories_created", 0)
                cognitive_state.cognitive_metrics["memories_created"] += 1
                cognitive_state.last_cognitive_update = datetime.now()
                
                return memory_id
            
            async def recall(query: str,
                           memory_types: List[MemoryType] = None,
                           limit: int = 10) -> List[MemoryEntry]:
                """Enhanced memory recall method"""
                
                if memory_types is None:
                    memory_types = cognitive_state.memory_profile.primary_memory_types
                
                # Add agent-specific query filter
                agent_query = f"{query} agent:{agent_id}"
                
                memories = await self.cognitive_system.memory_manager.search_memories(
                    agent_query, memory_types, limit
                )
                
                # Update agent metrics
                cognitive_state.cognitive_metrics.setdefault("memory_recalls", 0)
                cognitive_state.cognitive_metrics["memory_recalls"] += 1
                
                return memories
            
            async def reason(topic: str, 
                           goal: str,
                           reasoning_type: ReasoningType = None) -> str:
                """Enhanced reasoning method"""
                
                if reasoning_type is None:
                    reasoning_type = cognitive_state.memory_profile.reasoning_preferences[0]
                
                chain_id = await self.cognitive_system.reasoning_engine.start_reasoning_chain(
                    topic=f"{topic} (Agent: {agent_id})",
                    goal=goal,
                    reasoning_type=reasoning_type
                )
                
                # Track reasoning chain
                cognitive_state.active_reasoning_chains.append(chain_id)
                
                # Update metrics
                cognitive_state.cognitive_metrics.setdefault("reasoning_chains_started", 0) 
                cognitive_state.cognitive_metrics["reasoning_chains_started"] += 1
                
                return chain_id
            
            async def plan_strategically(title: str,
                                       primary_goal: str, 
                                       template_type: str = "cybersecurity_assessment") -> str:
                """Enhanced strategic planning method"""
                
                plan_id = await self.cognitive_system.strategic_planner.create_strategic_plan(
                    title=f"{title} (Agent: {agent_id})",
                    primary_goal=primary_goal,
                    template_type=template_type
                )
                
                # Track strategic plan
                cognitive_state.strategic_plans.append(plan_id)
                
                # Update metrics
                cognitive_state.cognitive_metrics.setdefault("strategic_plans_created", 0)
                cognitive_state.cognitive_metrics["strategic_plans_created"] += 1
                
                return plan_id
            
            async def get_cognitive_status() -> Dict[str, Any]:
                """Get cognitive status for agent"""
                
                return {
                    "agent_id": agent_id,
                    "active_reasoning_chains": len(cognitive_state.active_reasoning_chains),
                    "strategic_plans": len(cognitive_state.strategic_plans),
                    "last_cognitive_update": cognitive_state.last_cognitive_update.isoformat(),
                    "cognitive_metrics": cognitive_state.cognitive_metrics,
                    "memory_profile": {
                        "primary_memory_types": [mt.value for mt in cognitive_state.memory_profile.primary_memory_types],
                        "reasoning_preferences": [rt.value for rt in cognitive_state.memory_profile.reasoning_preferences],
                        "knowledge_domains": list(cognitive_state.memory_profile.knowledge_domains)
                    }
                }
            
            # Inject methods into base agent
            setattr(base_agent, 'remember', remember)
            setattr(base_agent, 'recall', recall)
            setattr(base_agent, 'reason', reason)
            setattr(base_agent, 'plan_strategically', plan_strategically)
            setattr(base_agent, 'get_cognitive_status', get_cognitive_status)
            setattr(base_agent, 'cognitive_state', cognitive_state)
            
            self.logger.debug(f"Injected cognitive methods into {agent_id} agent")
            
        except Exception as e:
            self.logger.error(f"Error injecting cognitive methods: {e}")
    
    def _start_cognitive_processes(self):
        """Start background cognitive processes"""
        
        # Memory consolidation process
        async def memory_consolidation_worker():
            while self.system_running:
                try:
                    await asyncio.sleep(3600)  # Every hour
                    await self._consolidate_agent_memories()
                except Exception as e:
                    self.logger.error(f"Memory consolidation error: {e}")
        
        # Inter-agent reasoning coordination
        async def inter_agent_reasoning_coordinator():
            while self.system_running:
                try:
                    await asyncio.sleep(1800)  # Every 30 minutes
                    await self._coordinate_inter_agent_reasoning()
                except Exception as e:
                    self.logger.error(f"Inter-agent reasoning error: {e}")
        
        # Strategic planning synchronization
        async def strategic_plan_synchronizer():
            while self.system_running:
                try:
                    await asyncio.sleep(7200)  # Every 2 hours  
                    await self._synchronize_strategic_plans()
                except Exception as e:
                    self.logger.error(f"Strategic plan sync error: {e}")
        
        # Global memory graph maintenance
        async def global_memory_maintenance():
            while self.system_running:
                try:
                    await asyncio.sleep(10800)  # Every 3 hours
                    await self._maintain_global_memory_graph()
                except Exception as e:
                    self.logger.error(f"Global memory maintenance error: {e}")
        
        # Start background tasks
        self.cognitive_tasks = [
            asyncio.create_task(memory_consolidation_worker()),
            asyncio.create_task(inter_agent_reasoning_coordinator()),
            asyncio.create_task(strategic_plan_synchronizer()),
            asyncio.create_task(global_memory_maintenance())
        ]
        
        self.logger.info("Started cognitive background processes")
    
    async def _consolidate_agent_memories(self):
        """Consolidate memories for all agents"""
        
        try:
            for agent_id, cognitive_state in self.cognitive_agents.items():
                
                # Check if consolidation is due
                if (cognitive_state.memory_consolidation_schedule and 
                    datetime.now() >= cognitive_state.memory_consolidation_schedule):
                    
                    # Perform memory consolidation
                    await self.cognitive_system.memory_manager.consolidate_memories()
                    
                    # Schedule next consolidation
                    cognitive_state.memory_consolidation_schedule = datetime.now() + timedelta(hours=6)
                    
                    # Update metrics
                    cognitive_state.cognitive_metrics.setdefault("memory_consolidations", 0)
                    cognitive_state.cognitive_metrics["memory_consolidations"] += 1
                    
                    self.logger.debug(f"Consolidated memories for agent {agent_id}")
            
        except Exception as e:
            self.logger.error(f"Error consolidating memories: {e}")
    
    async def _coordinate_inter_agent_reasoning(self):
        """Coordinate reasoning between agents"""
        
        try:
            # Find active reasoning chains from all agents
            all_chains = []
            for cognitive_state in self.cognitive_agents.values():
                all_chains.extend(cognitive_state.active_reasoning_chains)
            
            if len(all_chains) < 2:
                return  # Need at least 2 chains for coordination
            
            # Create collaborative reasoning chain
            collaborative_topic = "Multi-Agent Collaborative Analysis"
            collaborative_goal = "Synthesize insights from multiple agent perspectives"
            
            collaborative_chain_id = await self.cognitive_system.reasoning_engine.start_reasoning_chain(
                topic=collaborative_topic,
                goal=collaborative_goal,
                reasoning_type=ReasoningType.META_COGNITIVE
            )
            
            # Add reasoning steps from individual chains
            for chain_id in all_chains[-5:]:  # Last 5 chains
                try:
                    chain = await self.cognitive_system.reasoning_engine.get_reasoning_chain(chain_id)
                    if chain and chain.reasoning_steps:
                        await self.cognitive_system.reasoning_engine.add_reasoning_step(
                            collaborative_chain_id,
                            premise=f"Agent reasoning from chain {chain_id}",
                            inference_rule="collaborative_synthesis",
                            evidence=[step.conclusion for step in chain.reasoning_steps[-3:]]
                        )
                except Exception as e:
                    self.logger.debug(f"Error processing chain {chain_id}: {e}")
                    continue
            
            # Complete collaborative reasoning
            final_chain = await self.cognitive_system.reasoning_engine.complete_reasoning_chain(
                collaborative_chain_id
            )
            
            if final_chain:
                self.inter_agent_reasoning_chains[collaborative_chain_id] = {
                    "created_at": datetime.now(),
                    "participating_agents": list(self.cognitive_agents.keys()),
                    "conclusion": final_chain.conclusion,
                    "confidence": final_chain.confidence
                }
                
                self.logger.info(f"Created collaborative reasoning chain: {collaborative_chain_id}")
            
        except Exception as e:
            self.logger.error(f"Error coordinating inter-agent reasoning: {e}")
    
    async def _synchronize_strategic_plans(self):
        """Synchronize strategic plans across agents"""
        
        try:
            # Collect all strategic plans
            all_plans = []
            for cognitive_state in self.cognitive_agents.values():
                all_plans.extend(cognitive_state.strategic_plans)
            
            if not all_plans:
                return
            
            # Create master strategic plan
            master_plan_id = await self.cognitive_system.strategic_planner.create_strategic_plan(
                title="Multi-Agent Coordinated Strategic Plan",
                primary_goal="Coordinate strategic objectives across all agents",
                template_type="cybersecurity_assessment"
            )
            
            # Add goals from individual plans
            for plan_id in all_plans[-10:]:  # Last 10 plans
                try:
                    plan = await self.cognitive_system.strategic_planner.get_strategic_plan(plan_id)
                    if plan:
                        # Add plan's goals as sub-goals
                        await self.cognitive_system.strategic_planner.add_goal_to_plan(
                            master_plan_id,
                            title=f"Sub-goal from plan {plan_id}",
                            description=plan.primary_goal,
                            priority=5
                        )
                except Exception as e:
                    self.logger.debug(f"Error processing plan {plan_id}: {e}")
                    continue
            
            self.collaborative_strategic_plans[master_plan_id] = {
                "created_at": datetime.now(),
                "participating_agents": list(self.cognitive_agents.keys()),
                "individual_plans": all_plans
            }
            
            self.logger.info(f"Created master strategic plan: {master_plan_id}")
            
        except Exception as e:
            self.logger.error(f"Error synchronizing strategic plans: {e}")
    
    async def _maintain_global_memory_graph(self):
        """Maintain global memory graph across agents"""
        
        try:
            # Build memory relationships across agents
            for agent_id, cognitive_state in self.cognitive_agents.items():
                
                # Get recent memories for this agent
                recent_memories = await self.cognitive_system.memory_manager.search_memories(
                    query=f"agent:{agent_id}",
                    limit=20
                )
                
                for memory in recent_memories:
                    # Look for related memories from other agents
                    for other_agent_id in self.cognitive_agents.keys():
                        if other_agent_id == agent_id:
                            continue
                        
                        # Search for related memories
                        related_memories = await self.cognitive_system.memory_manager.search_memories(
                            query=f"agent:{other_agent_id}",
                            memory_types=[memory.memory_type],
                            limit=5
                        )
                        
                        # Create relationships
                        for related_memory in related_memories:
                            relationship_key = f"{memory.memory_id}:{related_memory.memory_id}"
                            
                            if relationship_key not in self.global_memory_graph:
                                self.global_memory_graph[relationship_key] = {
                                    "source_agent": agent_id,
                                    "target_agent": other_agent_id,
                                    "relationship_type": "cross_agent_correlation",
                                    "strength": 0.3,  # Base correlation strength
                                    "created_at": datetime.now(),
                                    "access_count": 0
                                }
            
            self.logger.debug(f"Global memory graph has {len(self.global_memory_graph)} relationships")
            
        except Exception as e:
            self.logger.error(f"Error maintaining global memory graph: {e}")
    
    async def _initialize_cognitive_orchestrator(self):
        """Initialize orchestrator with cognitive enhancements"""
        
        try:
            # Create enhanced orchestrator
            self.orchestrator = Orchestrator()
            
            # Inject cognitive coordination methods
            async def coordinate_cognitive_analysis(scenario: Dict[str, Any]) -> Dict[str, Any]:
                """Coordinate cognitive analysis across all agents"""
                
                results = {}
                
                # Run scenario through each cognitive agent
                for agent_id, cognitive_state in self.cognitive_agents.items():
                    base_agent = cognitive_state.base_agent
                    
                    # Store scenario in agent memory
                    memory_id = await base_agent.remember(
                        content={
                            "scenario": scenario,
                            "analysis_requested": datetime.now().isoformat(),
                            "scenario_type": scenario.get("type", "unknown")
                        },
                        memory_type=MemoryType.EPISODIC,
                        importance=0.8,
                        tags={"scenario_analysis", "orchestrated"}
                    )
                    
                    # Start reasoning chain for analysis
                    reasoning_chain_id = await base_agent.reason(
                        topic=f"Scenario Analysis: {scenario.get('title', 'Untitled')}",
                        goal=f"Analyze scenario from {agent_id} perspective",
                        reasoning_type=cognitive_state.memory_profile.reasoning_preferences[0]
                    )
                    
                    # Create strategic plan if appropriate
                    if agent_id in ["recon", "c2", "post_exploit"]:
                        plan_id = await base_agent.plan_strategically(
                            title=f"Strategic Response to Scenario ({agent_id})",
                            primary_goal=scenario.get("primary_goal", "Address scenario requirements")
                        )
                        results[f"{agent_id}_strategic_plan"] = plan_id
                    
                    results[f"{agent_id}_memory"] = memory_id
                    results[f"{agent_id}_reasoning"] = reasoning_chain_id
                
                # Create collaborative analysis
                collaborative_analysis = await self.cognitive_system.process_complex_scenario({
                    **scenario,
                    "multi_agent_analysis": True,
                    "participating_agents": list(self.cognitive_agents.keys()),
                    "individual_results": results
                })
                
                results["collaborative_analysis"] = collaborative_analysis
                
                return results
            
            async def get_system_cognitive_status() -> Dict[str, Any]:
                """Get cognitive status of entire system"""
                
                system_status = {
                    "timestamp": datetime.now().isoformat(),
                    "agents": {},
                    "global_metrics": {
                        "total_active_reasoning_chains": sum(
                            len(cs.active_reasoning_chains) 
                            for cs in self.cognitive_agents.values()
                        ),
                        "total_strategic_plans": sum(
                            len(cs.strategic_plans) 
                            for cs in self.cognitive_agents.values()
                        ),
                        "inter_agent_reasoning_chains": len(self.inter_agent_reasoning_chains),
                        "collaborative_strategic_plans": len(self.collaborative_strategic_plans),
                        "global_memory_relationships": len(self.global_memory_graph)
                    },
                    "memory_stats": await self.cognitive_system.memory_manager.get_memory_stats()
                }
                
                # Get individual agent status
                for agent_id, cognitive_state in self.cognitive_agents.items():
                    system_status["agents"][agent_id] = await cognitive_state.base_agent.get_cognitive_status()
                
                return system_status
            
            # Inject methods into orchestrator
            setattr(self.orchestrator, 'coordinate_cognitive_analysis', coordinate_cognitive_analysis)
            setattr(self.orchestrator, 'get_system_cognitive_status', get_system_cognitive_status)
            setattr(self.orchestrator, 'cognitive_agents', self.cognitive_agents)
            
            self.logger.info("Initialized cognitive orchestrator")
            
        except Exception as e:
            self.logger.error(f"Error initializing cognitive orchestrator: {e}")
    
    async def run_cognitive_scenario(self, scenario: Dict[str, Any]) -> Dict[str, Any]:
        """Run a scenario through the cognitive multi-agent system"""
        
        try:
            self.logger.info(f"Starting cognitive scenario: {scenario.get('title', 'Untitled')}")
            
            # Use orchestrator's cognitive analysis
            if self.orchestrator and hasattr(self.orchestrator, 'coordinate_cognitive_analysis'):
                results = await self.orchestrator.coordinate_cognitive_analysis(scenario)
            else:
                # Fallback to direct cognitive processing
                results = await self.cognitive_system.process_complex_scenario(scenario)
            
            self.logger.info("Cognitive scenario completed")
            return results
            
        except Exception as e:
            self.logger.error(f"Error running cognitive scenario: {e}")
            return {"status": "error", "message": str(e)}
    
    async def get_agent(self, agent_id: str) -> Optional[Any]:
        """Get enhanced agent by ID"""
        
        cognitive_state = self.cognitive_agents.get(agent_id)
        return cognitive_state.base_agent if cognitive_state else None
    
    async def get_system_status(self) -> Dict[str, Any]:
        """Get comprehensive system status"""
        
        if self.orchestrator and hasattr(self.orchestrator, 'get_system_cognitive_status'):
            return await self.orchestrator.get_system_cognitive_status()
        else:
            return {
                "status": "basic",
                "agents": list(self.cognitive_agents.keys()),
                "system_running": self.system_running
            }
    
    async def shutdown(self):
        """Graceful shutdown of the cognitive system"""
        
        try:
            self.logger.info("Shutting down persistent multi-agent system...")
            
            self.system_running = False
            
            # Cancel cognitive tasks
            for task in self.cognitive_tasks:
                task.cancel()
            
            if self.cognitive_tasks:
                await asyncio.gather(*self.cognitive_tasks, return_exceptions=True)
            
            # Shutdown server if running
            if self.server:
                await self.server.shutdown()
            
            self.logger.info("System shutdown complete")
            
        except Exception as e:
            self.logger.error(f"Error during shutdown: {e}")

# Factory function
def create_persistent_multi_agent_system(
    cognitive_db_path: str = "data/cognitive_system.db",
    enable_server: bool = True,
    server_port: int = 8080
) -> PersistentMultiAgentSystem:
    """Create persistent multi-agent system"""
    
    server_config = None
    if enable_server:
        server_config = create_server_config(port=server_port)
    
    return PersistentMultiAgentSystem(
        cognitive_db_path=cognitive_db_path,
        server_config=server_config
    )

# Example usage and testing
async def main():
    """Example usage of the persistent multi-agent system"""
    
    # Configure logging
    logging.basicConfig(level=logging.INFO)
    
    # Create system
    system = create_persistent_multi_agent_system()
    
    try:
        # Initialize
        await system.initialize_system()
        
        # Run example scenario
        scenario = {
            "title": "Advanced Persistent Threat Analysis",
            "type": "cybersecurity_assessment",
            "primary_goal": "Identify and analyze APT indicators",
            "target_environment": "corporate_network",
            "threat_indicators": [
                "suspicious_network_traffic",
                "unusual_authentication_patterns", 
                "lateral_movement_attempts"
            ],
            "time_constraints": "72_hours",
            "risk_tolerance": "low"
        }
        
        # Process scenario
        results = await system.run_cognitive_scenario(scenario)
        print(f"Scenario results: {json.dumps(results, indent=2, default=str)}")
        
        # Get system status
        status = await system.get_system_status()
        print(f"System status: {json.dumps(status, indent=2, default=str)}")
        
        # Keep system running
        while True:
            await asyncio.sleep(60)  # Check every minute
            
    except KeyboardInterrupt:
        print("Shutdown requested by user")
    finally:
        await system.shutdown()

if __name__ == "__main__":
    asyncio.run(main())