File size: 29,249 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
"""
Automated Data Quality Monitoring System
Monitors data quality metrics, detects anomalies, and ensures data integrity
"""

import json
import sqlite3
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from pathlib import Path
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import hashlib
import re
import statistics

class QualityMetricType(Enum):
    COMPLETENESS = "completeness"
    ACCURACY = "accuracy"
    CONSISTENCY = "consistency"
    VALIDITY = "validity"
    UNIQUENESS = "uniqueness"
    TIMELINESS = "timeliness"
    RELEVANCE = "relevance"

class AlertSeverity(Enum):
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    CRITICAL = "critical"

@dataclass
class QualityMetric:
    """Represents a data quality metric measurement"""
    metric_id: str
    dataset_id: str
    metric_type: QualityMetricType
    value: float
    threshold_min: float
    threshold_max: float
    measured_at: str
    passed: bool
    details: Dict[str, Any]

@dataclass
class QualityAlert:
    """Represents a data quality alert"""
    alert_id: str
    dataset_id: str
    metric_type: QualityMetricType
    severity: AlertSeverity
    message: str
    value: float
    threshold: float
    created_at: str
    resolved_at: Optional[str]
    resolved: bool

@dataclass
class DatasetProfile:
    """Statistical profile of a dataset"""
    dataset_id: str
    total_records: int
    total_columns: int
    null_percentage: float
    duplicate_percentage: float
    schema_hash: str
    last_updated: str
    column_profiles: Dict[str, Any]

class DataQualityMonitor:
    """Automated data quality monitoring system"""
    
    def __init__(self, db_path: str = "data/quality/data_quality.db"):
        self.db_path = Path(db_path)
        self.db_path.parent.mkdir(parents=True, exist_ok=True)
        self._init_database()
        self.quality_thresholds = self._load_default_thresholds()
        
    def _init_database(self):
        """Initialize the quality monitoring database"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Quality Metrics table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS quality_metrics (
                metric_id TEXT PRIMARY KEY,
                dataset_id TEXT NOT NULL,
                metric_type TEXT NOT NULL,
                value REAL NOT NULL,
                threshold_min REAL NOT NULL,
                threshold_max REAL NOT NULL,
                measured_at TEXT NOT NULL,
                passed BOOLEAN NOT NULL,
                details TEXT NOT NULL
            )
        """)
        
        # Quality Alerts table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS quality_alerts (
                alert_id TEXT PRIMARY KEY,
                dataset_id TEXT NOT NULL,
                metric_type TEXT NOT NULL,
                severity TEXT NOT NULL,
                message TEXT NOT NULL,
                value REAL NOT NULL,
                threshold REAL NOT NULL,
                created_at TEXT NOT NULL,
                resolved_at TEXT,
                resolved BOOLEAN DEFAULT FALSE
            )
        """)
        
        # Dataset Profiles table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS dataset_profiles (
                dataset_id TEXT PRIMARY KEY,
                total_records INTEGER NOT NULL,
                total_columns INTEGER NOT NULL,
                null_percentage REAL NOT NULL,
                duplicate_percentage REAL NOT NULL,
                schema_hash TEXT NOT NULL,
                last_updated TEXT NOT NULL,
                column_profiles TEXT NOT NULL
            )
        """)
        
        # Quality Rules table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS quality_rules (
                rule_id TEXT PRIMARY KEY,
                dataset_pattern TEXT NOT NULL,
                metric_type TEXT NOT NULL,
                threshold_min REAL,
                threshold_max REAL,
                severity TEXT NOT NULL,
                enabled BOOLEAN DEFAULT TRUE,
                created_at TEXT NOT NULL
            )
        """)
        
        # Create indices
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_metrics_dataset ON quality_metrics(dataset_id)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_metrics_type ON quality_metrics(metric_type)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_alerts_dataset ON quality_alerts(dataset_id)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_alerts_severity ON quality_alerts(severity)")
        
        conn.commit()
        conn.close()
    
    def _load_default_thresholds(self) -> Dict[str, Dict[str, float]]:
        """Load default quality thresholds for cybersecurity data"""
        return {
            "mitre_attack": {
                "completeness": {"min": 0.95, "max": 1.0},
                "accuracy": {"min": 0.90, "max": 1.0},
                "consistency": {"min": 0.85, "max": 1.0},
                "validity": {"min": 0.95, "max": 1.0},
                "uniqueness": {"min": 0.98, "max": 1.0}
            },
            "cve_data": {
                "completeness": {"min": 0.90, "max": 1.0},
                "accuracy": {"min": 0.95, "max": 1.0},
                "timeliness": {"min": 0.80, "max": 1.0},
                "validity": {"min": 0.95, "max": 1.0}
            },
            "threat_intel": {
                "completeness": {"min": 0.85, "max": 1.0},
                "accuracy": {"min": 0.90, "max": 1.0},
                "timeliness": {"min": 0.90, "max": 1.0},
                "relevance": {"min": 0.80, "max": 1.0}
            },
            "red_team_logs": {
                "completeness": {"min": 0.98, "max": 1.0},
                "consistency": {"min": 0.90, "max": 1.0},
                "validity": {"min": 0.95, "max": 1.0}
            }
        }
    
    def measure_completeness(self, data: pd.DataFrame) -> float:
        """Measure data completeness (percentage of non-null values)"""
        if data.empty:
            return 0.0
        
        total_cells = data.shape[0] * data.shape[1]
        non_null_cells = total_cells - data.isnull().sum().sum()
        return non_null_cells / total_cells if total_cells > 0 else 0.0
    
    def measure_accuracy(self, data: pd.DataFrame, dataset_type: str) -> float:
        """Measure data accuracy based on validation rules"""
        if data.empty:
            return 0.0
        
        accuracy_score = 1.0
        total_checks = 0
        failed_checks = 0
        
        # Cybersecurity-specific accuracy checks
        if dataset_type == "mitre_attack":
            # Check technique ID format
            if 'technique_id' in data.columns:
                technique_pattern = re.compile(r'^T\d{4}(\.\d{3})?$')
                invalid_ids = ~data['technique_id'].str.match(technique_pattern, na=False)
                failed_checks += invalid_ids.sum()
                total_checks += len(data)
        
        elif dataset_type == "cve_data":
            # Check CVE ID format
            if 'cve_id' in data.columns:
                cve_pattern = re.compile(r'^CVE-\d{4}-\d{4,}$')
                invalid_cves = ~data['cve_id'].str.match(cve_pattern, na=False)
                failed_checks += invalid_cves.sum()
                total_checks += len(data)
        
        elif dataset_type == "threat_intel":
            # Check IP address format
            if 'ip_address' in data.columns:
                ip_pattern = re.compile(r'^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$')
                invalid_ips = ~data['ip_address'].str.match(ip_pattern, na=False)
                failed_checks += invalid_ips.sum()
                total_checks += len(data)
        
        # General accuracy checks
        for column in data.select_dtypes(include=['object']).columns:
            # Check for suspicious patterns
            suspicious_patterns = ['<script>', 'javascript:', 'null', 'undefined', 'NaN']
            for pattern in suspicious_patterns:
                if data[column].astype(str).str.contains(pattern, case=False, na=False).any():
                    failed_checks += data[column].astype(str).str.contains(pattern, case=False, na=False).sum()
                    total_checks += len(data)
        
        if total_checks > 0:
            accuracy_score = (total_checks - failed_checks) / total_checks
        
        return max(0.0, min(1.0, accuracy_score))
    
    def measure_consistency(self, data: pd.DataFrame) -> float:
        """Measure data consistency across columns and records"""
        if data.empty:
            return 0.0
        
        consistency_score = 1.0
        consistency_checks = 0
        failed_consistency = 0
        
        # Check data type consistency within columns
        for column in data.columns:
            if data[column].dtype == 'object':
                # Check for mixed data types in string columns
                non_null_values = data[column].dropna()
                if len(non_null_values) > 0:
                    # Simple heuristic: check if values look like different data types
                    numeric_count = sum(str(val).replace('.', '').replace('-', '').isdigit() 
                                      for val in non_null_values)
                    if 0 < numeric_count < len(non_null_values):
                        failed_consistency += 1
                    consistency_checks += 1
        
        # Check for consistent naming conventions
        string_columns = data.select_dtypes(include=['object']).columns
        for column in string_columns:
            values = data[column].dropna().astype(str)
            if len(values) > 0:
                # Check case consistency
                upper_count = sum(val.isupper() for val in values if val.isalpha())
                lower_count = sum(val.islower() for val in values if val.isalpha())
                mixed_count = len(values) - upper_count - lower_count
                
                if mixed_count > 0 and (upper_count > 0 or lower_count > 0):
                    # Mixed case inconsistency
                    consistency_ratio = 1 - (mixed_count / len(values))
                    if consistency_ratio < 0.8:
                        failed_consistency += 1
                consistency_checks += 1
        
        if consistency_checks > 0:
            consistency_score = (consistency_checks - failed_consistency) / consistency_checks
        
        return max(0.0, min(1.0, consistency_score))
    
    def measure_validity(self, data: pd.DataFrame, dataset_type: str) -> float:
        """Measure data validity based on domain-specific rules"""
        if data.empty:
            return 0.0
        
        validity_score = 1.0
        total_validations = 0
        failed_validations = 0
        
        # Cybersecurity-specific validity checks
        if dataset_type == "threat_intel":
            # Validate confidence scores
            if 'confidence' in data.columns:
                invalid_confidence = (data['confidence'] < 0) | (data['confidence'] > 100)
                failed_validations += invalid_confidence.sum()
                total_validations += len(data)
            
            # Validate severity levels
            if 'severity' in data.columns:
                valid_severities = ['low', 'medium', 'high', 'critical']
                invalid_severity = ~data['severity'].str.lower().isin(valid_severities)
                failed_validations += invalid_severity.sum()
                total_validations += len(data)
        
        elif dataset_type == "cve_data":
            # Validate CVSS scores
            if 'cvss_score' in data.columns:
                invalid_cvss = (data['cvss_score'] < 0) | (data['cvss_score'] > 10)
                failed_validations += invalid_cvss.sum()
                total_validations += len(data)
        
        # General validity checks
        for column in data.select_dtypes(include=['int64', 'float64']).columns:
            # Check for unrealistic values (e.g., negative counts where they shouldn't be)
            if 'count' in column.lower() or 'number' in column.lower():
                negative_values = data[column] < 0
                failed_validations += negative_values.sum()
                total_validations += len(data)
        
        if total_validations > 0:
            validity_score = (total_validations - failed_validations) / total_validations
        
        return max(0.0, min(1.0, validity_score))
    
    def measure_uniqueness(self, data: pd.DataFrame) -> float:
        """Measure data uniqueness (percentage of unique records)"""
        if data.empty:
            return 1.0
        
        total_records = len(data)
        unique_records = len(data.drop_duplicates())
        return unique_records / total_records if total_records > 0 else 1.0
    
    def measure_timeliness(self, data: pd.DataFrame, dataset_type: str) -> float:
        """Measure data timeliness based on timestamps"""
        if data.empty:
            return 0.0
        
        # Look for timestamp columns
        timestamp_columns = []
        for column in data.columns:
            if any(keyword in column.lower() for keyword in ['time', 'date', 'created', 'updated']):
                try:
                    pd.to_datetime(data[column].dropna().iloc[0])
                    timestamp_columns.append(column)
                except:
                    continue
        
        if not timestamp_columns:
            return 1.0  # No timestamp data to evaluate
        
        # Calculate timeliness based on most recent timestamp
        most_recent_col = timestamp_columns[0]
        try:
            timestamps = pd.to_datetime(data[most_recent_col].dropna())
            if len(timestamps) == 0:
                return 0.0
            
            now = datetime.now()
            max_age_days = 30  # Consider data stale after 30 days for cybersecurity
            
            # Calculate age of most recent record
            most_recent = timestamps.max()
            age_days = (now - most_recent).days
            
            # Timeliness score: 1.0 for fresh data, decreasing with age
            timeliness_score = max(0.0, 1.0 - (age_days / max_age_days))
            return timeliness_score
            
        except Exception:
            return 0.0
    
    def measure_relevance(self, data: pd.DataFrame, dataset_type: str) -> float:
        """Measure data relevance based on content analysis"""
        if data.empty:
            return 0.0
        
        relevance_score = 1.0
        
        # Cybersecurity-specific relevance checks
        cybersec_keywords = [
            'attack', 'threat', 'vulnerability', 'exploit', 'malware',
            'phishing', 'breach', 'intrusion', 'security', 'defense',
            'detection', 'prevention', 'mitigation', 'incident'
        ]
        
        text_columns = data.select_dtypes(include=['object']).columns
        if len(text_columns) > 0:
            total_relevance = 0
            relevance_checks = 0
            
            for column in text_columns:
                text_data = data[column].dropna().astype(str).str.lower()
                if len(text_data) > 0:
                    # Count records containing cybersecurity keywords
                    relevant_records = 0
                    for text in text_data:
                        if any(keyword in text for keyword in cybersec_keywords):
                            relevant_records += 1
                    
                    column_relevance = relevant_records / len(text_data)
                    total_relevance += column_relevance
                    relevance_checks += 1
            
            if relevance_checks > 0:
                relevance_score = total_relevance / relevance_checks
        
        return max(0.0, min(1.0, relevance_score))
    
    def create_dataset_profile(self, dataset_id: str, data: pd.DataFrame) -> DatasetProfile:
        """Create a statistical profile of a dataset"""
        if data.empty:
            return DatasetProfile(
                dataset_id=dataset_id,
                total_records=0,
                total_columns=0,
                null_percentage=1.0,
                duplicate_percentage=0.0,
                schema_hash="",
                last_updated=datetime.now().isoformat(),
                column_profiles={}
            )
        
        # Calculate basic statistics
        total_records = len(data)
        total_columns = len(data.columns)
        null_percentage = data.isnull().sum().sum() / (total_records * total_columns)
        duplicate_percentage = (total_records - len(data.drop_duplicates())) / total_records
        
        # Create schema hash
        schema_info = f"{list(data.columns)}_{list(data.dtypes)}"
        schema_hash = hashlib.md5(schema_info.encode()).hexdigest()
        
        # Profile each column
        column_profiles = {}
        for column in data.columns:
            col_data = data[column]
            profile = {
                "data_type": str(col_data.dtype),
                "null_count": int(col_data.isnull().sum()),
                "null_percentage": float(col_data.isnull().sum() / len(col_data)),
                "unique_count": int(col_data.nunique()),
                "unique_percentage": float(col_data.nunique() / len(col_data))
            }
            
            if col_data.dtype in ['int64', 'float64']:
                profile.update({
                    "min": float(col_data.min()) if not col_data.isna().all() else None,
                    "max": float(col_data.max()) if not col_data.isna().all() else None,
                    "mean": float(col_data.mean()) if not col_data.isna().all() else None,
                    "std": float(col_data.std()) if not col_data.isna().all() else None
                })
            elif col_data.dtype == 'object':
                profile.update({
                    "avg_length": float(col_data.astype(str).str.len().mean()) if not col_data.isna().all() else None,
                    "max_length": int(col_data.astype(str).str.len().max()) if not col_data.isna().all() else None
                })
            
            column_profiles[column] = profile
        
        return DatasetProfile(
            dataset_id=dataset_id,
            total_records=total_records,
            total_columns=total_columns,
            null_percentage=null_percentage,
            duplicate_percentage=duplicate_percentage,
            schema_hash=schema_hash,
            last_updated=datetime.now().isoformat(),
            column_profiles=column_profiles
        )
    
    def monitor_dataset(self, dataset_id: str, data: pd.DataFrame, dataset_type: str) -> List[QualityMetric]:
        """Monitor a dataset and return quality metrics"""
        metrics = []
        timestamp = datetime.now().isoformat()
        
        # Get thresholds for this dataset type
        thresholds = self.quality_thresholds.get(dataset_type, {})
        
        # Measure each quality dimension
        quality_measures = {
            QualityMetricType.COMPLETENESS: self.measure_completeness(data),
            QualityMetricType.ACCURACY: self.measure_accuracy(data, dataset_type),
            QualityMetricType.CONSISTENCY: self.measure_consistency(data),
            QualityMetricType.VALIDITY: self.measure_validity(data, dataset_type),
            QualityMetricType.UNIQUENESS: self.measure_uniqueness(data),
            QualityMetricType.TIMELINESS: self.measure_timeliness(data, dataset_type),
            QualityMetricType.RELEVANCE: self.measure_relevance(data, dataset_type)
        }
        
        # Create quality metrics
        for metric_type, value in quality_measures.items():
            metric_name = metric_type.value
            threshold = thresholds.get(metric_name, {"min": 0.8, "max": 1.0})
            
            metric = QualityMetric(
                metric_id=f"{dataset_id}_{metric_name}_{timestamp.replace(':', '')}",
                dataset_id=dataset_id,
                metric_type=metric_type,
                value=value,
                threshold_min=threshold["min"],
                threshold_max=threshold["max"],
                measured_at=timestamp,
                passed=threshold["min"] <= value <= threshold["max"],
                details={
                    "dataset_type": dataset_type,
                    "threshold_min": threshold["min"],
                    "threshold_max": threshold["max"],
                    "measurement_context": f"Automated monitoring at {timestamp}"
                }
            )
            
            metrics.append(metric)
            
            # Store metric in database
            self._store_metric(metric)
            
            # Check if alert should be generated
            if not metric.passed:
                self._generate_alert(metric)
        
        # Create and store dataset profile
        profile = self.create_dataset_profile(dataset_id, data)
        self._store_profile(profile)
        
        return metrics
    
    def _store_metric(self, metric: QualityMetric):
        """Store a quality metric in the database"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            INSERT OR REPLACE INTO quality_metrics 
            (metric_id, dataset_id, metric_type, value, threshold_min, threshold_max,
             measured_at, passed, details)
            VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
        """, (
            metric.metric_id, metric.dataset_id, metric.metric_type.value,
            metric.value, metric.threshold_min, metric.threshold_max,
            metric.measured_at, metric.passed, json.dumps(metric.details)
        ))
        
        conn.commit()
        conn.close()
    
    def _store_profile(self, profile: DatasetProfile):
        """Store a dataset profile in the database"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            INSERT OR REPLACE INTO dataset_profiles 
            (dataset_id, total_records, total_columns, null_percentage,
             duplicate_percentage, schema_hash, last_updated, column_profiles)
            VALUES (?, ?, ?, ?, ?, ?, ?, ?)
        """, (
            profile.dataset_id, profile.total_records, profile.total_columns,
            profile.null_percentage, profile.duplicate_percentage,
            profile.schema_hash, profile.last_updated, json.dumps(profile.column_profiles)
        ))
        
        conn.commit()
        conn.close()
    
    def _generate_alert(self, metric: QualityMetric):
        """Generate a quality alert for a failed metric"""
        # Determine severity based on how far the value is from threshold
        if metric.value < metric.threshold_min:
            deviation = (metric.threshold_min - metric.value) / metric.threshold_min
        else:
            deviation = (metric.value - metric.threshold_max) / metric.threshold_max
        
        if deviation > 0.5:
            severity = AlertSeverity.CRITICAL
        elif deviation > 0.3:
            severity = AlertSeverity.HIGH
        elif deviation > 0.1:
            severity = AlertSeverity.MEDIUM
        else:
            severity = AlertSeverity.LOW
        
        alert = QualityAlert(
            alert_id=f"alert_{metric.metric_id}",
            dataset_id=metric.dataset_id,
            metric_type=metric.metric_type,
            severity=severity,
            message=f"{metric.metric_type.value} quality check failed: {metric.value:.3f} outside threshold [{metric.threshold_min}, {metric.threshold_max}]",
            value=metric.value,
            threshold=metric.threshold_min if metric.value < metric.threshold_min else metric.threshold_max,
            created_at=datetime.now().isoformat(),
            resolved_at=None,
            resolved=False
        )
        
        # Store alert in database
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            INSERT OR REPLACE INTO quality_alerts 
            (alert_id, dataset_id, metric_type, severity, message, value,
             threshold, created_at, resolved_at, resolved)
            VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
        """, (
            alert.alert_id, alert.dataset_id, alert.metric_type.value,
            alert.severity.value, alert.message, alert.value,
            alert.threshold, alert.created_at, alert.resolved_at, alert.resolved
        ))
        
        conn.commit()
        conn.close()
    
    def generate_quality_report(self, dataset_id: Optional[str] = None) -> Dict[str, Any]:
        """Generate a comprehensive data quality report"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        report = {
            "generated_at": datetime.now().isoformat(),
            "scope": "all_datasets" if dataset_id is None else f"dataset_{dataset_id}",
            "summary": {},
            "metrics_summary": {},
            "alerts_summary": {},
            "recommendations": []
        }
        
        # Build WHERE clause for dataset filtering
        where_clause = ""
        params = []
        if dataset_id:
            where_clause = "WHERE dataset_id = ?"
            params.append(dataset_id)
        
        # Summary statistics
        cursor.execute(f"SELECT COUNT(DISTINCT dataset_id) FROM quality_metrics {where_clause}", params)
        total_datasets = cursor.fetchone()[0]
        
        cursor.execute(f"SELECT COUNT(*) FROM quality_metrics {where_clause}", params)
        total_metrics = cursor.fetchone()[0]
        
        cursor.execute(f"SELECT COUNT(*) FROM quality_alerts {where_clause} AND resolved = 0", params)
        active_alerts = cursor.fetchone()[0]
        
        report["summary"] = {
            "total_datasets": total_datasets,
            "total_metrics": total_metrics,
            "active_alerts": active_alerts
        }
        
        # Metrics summary by type
        cursor.execute(f"""
            SELECT metric_type, 
                   COUNT(*) as count,
                   AVG(value) as avg_value,
                   MIN(value) as min_value,
                   MAX(value) as max_value,
                   SUM(CASE WHEN passed = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) as pass_rate
            FROM quality_metrics {where_clause}
            GROUP BY metric_type
        """, params)
        
        for row in cursor.fetchall():
            report["metrics_summary"][row[0]] = {
                "count": row[1],
                "average_value": row[2],
                "min_value": row[3],
                "max_value": row[4],
                "pass_rate": row[5]
            }
        
        # Alerts summary by severity
        cursor.execute(f"""
            SELECT severity, COUNT(*) as count
            FROM quality_alerts {where_clause} AND resolved = 0
            GROUP BY severity
        """, params)
        
        for row in cursor.fetchall():
            report["alerts_summary"][row[0]] = row[1]
        
        # Generate recommendations
        for metric_type, stats in report["metrics_summary"].items():
            if stats["pass_rate"] < 90:
                report["recommendations"].append(
                    f"Improve {metric_type} quality (current pass rate: {stats['pass_rate']:.1f}%)"
                )
        
        if report["summary"]["active_alerts"] > 0:
            report["recommendations"].append(
                f"Address {report['summary']['active_alerts']} active quality alerts"
            )
        
        conn.close()
        return report

# Example usage and testing
if __name__ == "__main__":
    # Initialize the monitor
    monitor = DataQualityMonitor("data/quality/data_quality.db")
    
    # Create sample cybersecurity data for testing
    sample_data = pd.DataFrame({
        'technique_id': ['T1001', 'T1002', 'T1003', 'INVALID', 'T1005'],
        'technique_name': ['Data Obfuscation', 'Data Compressed', 'OS Credential Dumping', 'Test', 'Data from Local System'],
        'confidence': [95, 87, 92, 150, 88],  # 150 is invalid (out of range)
        'severity': ['high', 'medium', 'high', 'unknown', 'medium'],  # 'unknown' is invalid
        'last_updated': ['2024-08-01', '2024-08-02', '2024-07-15', '2024-08-03', '2024-08-01']
    })
    
    # Monitor the dataset
    metrics = monitor.monitor_dataset("test_mitre_data", sample_data, "mitre_attack")
    
    print("Quality Metrics:")
    for metric in metrics:
        status = "✅ PASS" if metric.passed else "❌ FAIL"
        print(f"  {metric.metric_type.value}: {metric.value:.3f} {status}")
    
    # Generate quality report
    report = monitor.generate_quality_report("test_mitre_data")
    print("\nQuality Report:")
    print(json.dumps(report, indent=2))
    
    print("✅ Automated Data Quality Monitoring System implemented and tested")