Spaces:
Running
Running
File size: 1,633 Bytes
052c3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# -*- coding: utf-8 -*-
# Copyright 2024 Wen-Chin Huang
# MIT License (https://opensource.org/licenses/MIT)
# LDNet modules
# taken from: https://github.com/unilight/LDNet/blob/main/models/modules.py (written by myself)
import torch
from torch import nn
STRIDE = 3
class Projection(nn.Module):
def __init__(
self,
in_dim,
hidden_dim,
activation,
output_type,
_output_dim,
output_step=1.0,
range_clipping=False,
):
super(Projection, self).__init__()
self.output_type = output_type
self.range_clipping = range_clipping
if output_type == "scalar":
output_dim = 1
if range_clipping:
self.proj = nn.Tanh()
elif output_type == "categorical":
output_dim = _output_dim
self.output_step = output_step
else:
raise NotImplementedError("wrong output_type: {}".format(output_type))
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
activation(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, output_dim),
)
def forward(self, x, inference=False):
output = self.net(x)
# scalar / categorical
if self.output_type == "scalar":
# range clipping
if self.range_clipping:
return self.proj(output) * 2.0 + 3
else:
return output
else:
if inference:
return torch.argmax(output, dim=-1) * self.output_step + 1
else:
return output |