File size: 1,353 Bytes
ff1487e 531dcfc ff1487e 531dcfc ff1487e 531dcfc ff1487e 531dcfc ff1487e 531dcfc ff1487e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
import pandas as pd
image_path = "data/protein_dendrogram.png"
protein_clusters = pd.read_excel('data/protein_clusters.xlsx')
max_length = 500
protein_clusters['proteins'] = protein_clusters['proteins'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else ''))
protein_clusters['protein groups'] = protein_clusters['protein groups'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else ''))
protein_clusters['protein features'] = protein_clusters['protein features'].apply(lambda x: x[:max_length] + ('...' if len(x) > max_length else ''))
with gr.Blocks() as demo:
gr.Markdown("# Protein similarity from BERT point of view")
gr.Markdown("This app displays protein similarity captured in the model [unikei/bert-base-proteins]("
"https://huggingface.co/unikei/bert-base-proteins).")
gr.Image(image_path,
label="Right click to zoom in new tab.",
container=True
)
gr.Markdown("\n")
gr.Markdown("Click on the [link](https://huggingface.co/spaces/unikei/proteins-from-bert-point-of-view/blob/main/data/protein_clusters.xlsx) to download the spreadsheet.")
gr.DataFrame(protein_clusters,
interactive=False,
wrap=True,
column_widths=[5, 5, 30, 30, 30])
#
demo.launch()
|