File size: 12,519 Bytes
aaa69e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386


#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Matching functions"""

import numpy as np
import numba

from .exceptions import ParameterError
from .utils import valid_intervals
from .._typing import _SequenceLike

__all__ = ["match_intervals", "match_events"]


@numba.jit(nopython=True, cache=False)  # type: ignore
def __jaccard(int_a: np.ndarray, int_b: np.ndarray):  # pragma: no cover
    """Jaccard similarity between two intervals

    Parameters
    ----------
    int_a, int_b : np.ndarrays, shape=(2,)

    Returns
    -------
    Jaccard similarity between intervals
    """
    ends = [int_a[1], int_b[1]]
    if ends[1] < ends[0]:
        ends.reverse()

    starts = [int_a[0], int_b[0]]
    if starts[1] < starts[0]:
        starts.reverse()

    intersection = ends[0] - starts[1]
    if intersection < 0:
        intersection = 0.0

    union = ends[1] - starts[0]

    if union > 0:
        return intersection / union

    return 0.0


@numba.jit(nopython=True, cache=False)
def __match_interval_overlaps(query, intervals_to, candidates):  # pragma: no cover
    """Find the best Jaccard match from query to candidates"""

    best_score = -1
    best_idx = -1
    for idx in candidates:
        score = __jaccard(query, intervals_to[idx])

        if score > best_score:
            best_score, best_idx = score, idx
    return best_idx


@numba.jit(nopython=True, cache=False)  # type: ignore
def __match_intervals(
    intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True
) -> np.ndarray:  # pragma: no cover
    """Numba-accelerated interval matching algorithm."""
    # sort index of the interval starts
    start_index = np.argsort(intervals_to[:, 0])

    # sort index of the interval ends
    end_index = np.argsort(intervals_to[:, 1])

    # and sorted values of starts
    start_sorted = intervals_to[start_index, 0]
    # and ends
    end_sorted = intervals_to[end_index, 1]

    search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side="right")
    search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side="left")

    output = np.empty(len(intervals_from), dtype=numba.uint32)
    for i in range(len(intervals_from)):
        query = intervals_from[i]

        # Find the intervals that start after our query ends
        after_query = search_ends[i]
        # And the intervals that end after our query begins
        before_query = search_starts[i]

        # Candidates for overlapping have to (end after we start) and (begin before we end)
        candidates = set(start_index[:after_query]) & set(end_index[before_query:])

        # Proceed as before
        if len(candidates) > 0:
            output[i] = __match_interval_overlaps(query, intervals_to, candidates)
        elif strict:
            # Numba only lets us use compile-time constants in exception messages
            raise ParameterError
        else:
            # Find the closest interval
            # (start_index[after_query] - query[1]) is the distance to the next interval
            # (query[0] - end_index[before_query])
            dist_before = np.inf
            dist_after = np.inf
            if search_starts[i] > 0:
                dist_before = query[0] - end_sorted[search_starts[i] - 1]
            if search_ends[i] + 1 < len(intervals_to):
                dist_after = start_sorted[search_ends[i] + 1] - query[1]
            if dist_before < dist_after:
                output[i] = end_index[search_starts[i] - 1]
            else:
                output[i] = start_index[search_ends[i] + 1]
    return output


def match_intervals(
    intervals_from: np.ndarray, intervals_to: np.ndarray, strict: bool = True
) -> np.ndarray:
    """Match one set of time intervals to another.

    This can be useful for tasks such as mapping beat timings
    to segments.

    Each element ``[a, b]`` of ``intervals_from`` is matched to the
    element ``[c, d]`` of ``intervals_to`` which maximizes the
    Jaccard similarity between the intervals::

        max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|

    In ``strict=True`` mode, if there is no interval with positive
    intersection with ``[a,b]``, an exception is thrown.

    In ``strict=False`` mode, any interval ``[a, b]`` that has no
    intersection with any element of ``intervals_to`` is instead
    matched to the interval ``[c, d]`` which minimizes::

        min(|b - c|, |a - d|)

    that is, the disjoint interval [c, d] with a boundary closest
    to [a, b].

    .. note:: An element of ``intervals_to`` may be matched to multiple
       entries of ``intervals_from``.

    Parameters
    ----------
    intervals_from : np.ndarray [shape=(n, 2)]
        The time range for source intervals.
        The ``i`` th interval spans time ``intervals_from[i, 0]``
        to ``intervals_from[i, 1]``.
        ``intervals_from[0, 0]`` should be 0, ``intervals_from[-1, 1]``
        should be the track duration.
    intervals_to : np.ndarray [shape=(m, 2)]
        Analogous to ``intervals_from``.
    strict : bool
        If ``True``, intervals can only match if they intersect.
        If ``False``, disjoint intervals can match.

    Returns
    -------
    interval_mapping : np.ndarray [shape=(n,)]
        For each interval in ``intervals_from``, the
        corresponding interval in ``intervals_to``.

    See Also
    --------
    match_events

    Raises
    ------
    ParameterError
        If either array of input intervals is not the correct shape

        If ``strict=True`` and some element of ``intervals_from`` is disjoint from
        every element of ``intervals_to``.

    Examples
    --------
    >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]])
    >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]])
    >>> librosa.util.match_intervals(ints_from, ints_to)
    array([2, 1, 2], dtype=uint32)
    >>> # [3, 5] => [4, 5]  (ints_to[2])
    >>> # [1, 4] => [1, 3]  (ints_to[1])
    >>> # [4, 5] => [4, 5]  (ints_to[2])

    The reverse matching of the above is not possible in ``strict`` mode
    because ``[6, 7]`` is disjoint from all intervals in ``ints_from``.
    With ``strict=False``, we get the following:

    >>> librosa.util.match_intervals(ints_to, ints_from, strict=False)
    array([1, 1, 2, 2], dtype=uint32)
    >>> # [0, 2] => [1, 4]  (ints_from[1])
    >>> # [1, 3] => [1, 4]  (ints_from[1])
    >>> # [4, 5] => [4, 5]  (ints_from[2])
    >>> # [6, 7] => [4, 5]  (ints_from[2])
    """

    if len(intervals_from) == 0 or len(intervals_to) == 0:
        raise ParameterError("Attempting to match empty interval list")

    # Verify that the input intervals has correct shape and size
    valid_intervals(intervals_from)
    valid_intervals(intervals_to)

    try:
        # Suppress type check because of numba wrapper
        return __match_intervals(intervals_from, intervals_to, strict=strict)  # type: ignore
    except ParameterError as exc:
        raise ParameterError(f"Unable to match intervals with strict={strict}") from exc


def match_events(
    events_from: _SequenceLike,
    events_to: _SequenceLike,
    left: bool = True,
    right: bool = True,
) -> np.ndarray:
    """Match one set of events to another.

    This is useful for tasks such as matching beats to the nearest
    detected onsets, or frame-aligned events to the nearest zero-crossing.

    .. note:: A target event may be matched to multiple source events.

    Examples
    --------
    >>> # Sources are multiples of 7
    >>> s_from = np.arange(0, 100, 7)
    >>> s_from
    array([ 0,  7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91,
           98])
    >>> # Targets are multiples of 10
    >>> s_to = np.arange(0, 100, 10)
    >>> s_to
    array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])
    >>> # Find the matching
    >>> idx = librosa.util.match_events(s_from, s_to)
    >>> idx
    array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9])
    >>> # Print each source value to its matching target
    >>> zip(s_from, s_to[idx])
    [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30),
     (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80),
     (84, 80), (91, 90), (98, 90)]

    Parameters
    ----------
    events_from : ndarray [shape=(n,)]
        Array of events (eg, times, sample or frame indices) to match from.
    events_to : ndarray [shape=(m,)]
        Array of events (eg, times, sample or frame indices) to
        match against.
    left : bool
    right : bool
        If ``False``, then matched events cannot be to the left (or right)
        of source events.

    Returns
    -------
    event_mapping : np.ndarray [shape=(n,)]
        For each event in ``events_from``, the corresponding event
        index in ``events_to``::

            event_mapping[i] == arg min |events_from[i] - events_to[:]|

    See Also
    --------
    match_intervals

    Raises
    ------
    ParameterError
        If either array of input events is not the correct shape
    """
    if len(events_from) == 0 or len(events_to) == 0:
        raise ParameterError("Attempting to match empty event list")

    # If we can't match left or right, then only strict equivalence
    # counts as a match.
    if not (left or right) and not np.all(np.in1d(events_from, events_to)):
        raise ParameterError(
            "Cannot match events with left=right=False "
            "and events_from is not contained "
            "in events_to"
        )

    # If we can't match to the left, then there should be at least one
    # target event greater-equal to every source event
    if (not left) and max(events_to) < max(events_from):
        raise ParameterError(
            "Cannot match events with left=False "
            "and max(events_to) < max(events_from)"
        )

    # If we can't match to the right, then there should be at least one
    # target event less-equal to every source event
    if (not right) and min(events_to) > min(events_from):
        raise ParameterError(
            "Cannot match events with right=False "
            "and min(events_to) > min(events_from)"
        )

    # array of matched items
    output = np.empty_like(events_from, dtype=np.int32)

    # Suppress type check because of numba
    return __match_events_helper(output, events_from, events_to, left, right)  # type: ignore


@numba.jit(nopython=True, cache=False)  # type: ignore
def __match_events_helper(
    output: np.ndarray,
    events_from: np.ndarray,
    events_to: np.ndarray,
    left: bool = True,
    right: bool = True,
):  # pragma: no cover
    # mock dictionary for events
    from_idx = np.argsort(events_from)
    sorted_from = events_from[from_idx]

    to_idx = np.argsort(events_to)
    sorted_to = events_to[to_idx]

    # find the matching indices
    matching_indices = np.searchsorted(sorted_to, sorted_from)

    # iterate over indices in matching_indices
    for ind, middle_ind in enumerate(matching_indices):
        left_flag = False
        right_flag = False

        left_ind = -1
        right_ind = len(matching_indices)

        left_diff = 0
        right_diff = 0
        mid_diff = 0

        middle_ind = matching_indices[ind]
        sorted_from_num = sorted_from[ind]

        # Prevent oob from chosen index
        if middle_ind == len(sorted_to):
            middle_ind -= 1

        # Permitted to look to the left
        if left and middle_ind > 0:
            left_ind = middle_ind - 1
            left_flag = True

        # Permitted to look to right
        if right and middle_ind < len(sorted_to) - 1:
            right_ind = middle_ind + 1
            right_flag = True

        mid_diff = abs(sorted_to[middle_ind] - sorted_from_num)
        if left and left_flag:
            left_diff = abs(sorted_to[left_ind] - sorted_from_num)
        if right and right_flag:
            right_diff = abs(sorted_to[right_ind] - sorted_from_num)

        if left_flag and (
            not right
            and (sorted_to[middle_ind] > sorted_from_num)
            or (not right_flag and left_diff < mid_diff)
            or (left_diff < right_diff and left_diff < mid_diff)
        ):
            output[ind] = to_idx[left_ind]

        # Check if right should be chosen
        elif right_flag and (right_diff < mid_diff):
            output[ind] = to_idx[right_ind]

        # Selected index wins
        else:
            output[ind] = to_idx[middle_ind]

    # Undo sorting
    solutions = np.empty_like(output)
    solutions[from_idx] = output

    return solutions