File size: 3,003 Bytes
8d37eb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from openai import OpenAI
import streamlit as st
from st_multimodal_chatinput import multimodal_chatinput

##hack to make sure that chatinput is always at the bottom of the page
##will only work if multimodal_chatinput is called inside the first st.container of the page

##############################################################################
def reconfig_chatinput():
    st.markdown(
        """
    <style>
        div[data-testid="stVerticalBlock"] div[data-testid="stVerticalBlock"]:first-of-type {
            position: fixed;
            bottom: 0;
            background-color: #0E117;
            z-index: 1000;
            /* Other styles as needed */    
        }
    </style>
    """,
        unsafe_allow_html=True,
    )
    return

reconfig_chatinput()       
##############################################################################


st.title("ChatGPT with Vision")

client = OpenAI(api_key=st.secrets["OPENAI_KEY"])

if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo"

if "messages" not in st.session_state:
    st.session_state.messages = []


chatbox = st.container()

for message in st.session_state.messages:
    with chatbox.chat_message(message["role"]):
        contents = message["content"]
        for content in contents:
            if content["type"] == "text":
                chatbox.markdown(content["text"])
            elif content["type"] == "image_url":
                chatbox.image(content["image_url"]["url"])


def push_message(role, content, images=None):
    contents = []
    contents.append({"type": "text", "text": content})
    if images:
        for image in images:
            obj = {
                "type": "image_url",
                "image_url": {
                    "url": image,
                },
            }
            contents.append(obj)

    print("pushing message", role, contents)
    message = {"role": role, "content": contents}
    st.session_state.messages.append(message)
    return message


with st.container():
    multimodal_prompt = multimodal_chatinput()
    if multimodal_prompt:
        prompt = multimodal_prompt["text"]
        push_message("user", prompt)
        # with st.chat_message("user"):
        #     st.markdown(prompt)

        # with st.chat_message("assistant"):
        messages = [
            {"role": m["role"], "content": m["content"]}
            for m in st.session_state.messages
        ]
        print("api call", messages)
        stream = client.chat.completions.create(
            model="gpt-4-vision-preview",
            messages=messages,
            # stream=True,
            max_tokens=1024,
        )
        # response = st.write_stream(stream)
        # print("api response", stream)
        stream = stream.choices[0].message.content
        # response = st.markdown(stream)
        response = stream
        push_message("assistant", response)


# chat_placeholder = st.empty()

# with chat_placeholder.container():