Spaces:
Sleeping
Sleeping
File size: 3,961 Bytes
71b467a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
""" from https://github.com/keithito/tacotron """
'''
Cleaners are transformations that run over the input text at both training and eval time.
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
1. "english_cleaners" for English text
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
the symbols in symbols.py to match your data).
'''
import re
from unidecode import unidecode
from phonemizer import phonemize
from pypinyin import Style, pinyin
from pypinyin.style._utils import get_finals, get_initials
# Regular expression matching whitespace:
_whitespace_re = re.compile(r'\s+')
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
('mrs', 'misess'),
('mr', 'mister'),
('dr', 'doctor'),
('st', 'saint'),
('co', 'company'),
('jr', 'junior'),
('maj', 'major'),
('gen', 'general'),
('drs', 'doctors'),
('rev', 'reverend'),
('lt', 'lieutenant'),
('hon', 'honorable'),
('sgt', 'sergeant'),
('capt', 'captain'),
('esq', 'esquire'),
('ltd', 'limited'),
('col', 'colonel'),
('ft', 'fort'),
]]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, ' ', text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
text = lowercase(text)
text = collapse_whitespace(text)
return text
def transliteration_cleaners(text):
'''Pipeline for non-English text that transliterates to ASCII.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def english_cleaners(text):
'''Pipeline for English text, including abbreviation expansion.'''
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
phonemes = collapse_whitespace(phonemes)
return phonemes
def english_cleaners2(text):
'''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
phonemes = collapse_whitespace(phonemes)
return phonemes
def chinese_cleaners1(text):
from pypinyin import Style, pinyin
phones = [phone[0] for phone in pinyin(text, style=Style.TONE3)]
return ' '.join(phones)
def chinese_cleaners2(text):
phones = [
p
for phone in pinyin(text, style=Style.TONE3)
for p in [
get_initials(phone[0], strict=True),
get_finals(phone[0][:-1], strict=True) + phone[0][-1]
if phone[0][-1].isdigit()
else get_finals(phone[0], strict=True)
if phone[0][-1].isalnum()
else phone[0],
]
# Remove the case of individual tones as a phoneme
if len(p) != 0 and not p.isdigit()
]
return phones
# return phonemes
if __name__ == '__main__':
res = chinese_cleaners2('这是语音测试!')
print(res)
res = chinese_cleaners1('"第一,南京不是发展的不行,是大家对他期望很高,')
print(res)
res = english_cleaners2('this is a club test for one train.GDP')
print(res) |