Spaces:
Build error
Build error
File size: 15,590 Bytes
c426e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import argparse
import json
import os
from collections import defaultdict
from sklearn.metrics import log_loss
from torch import topk
import sys
print('@@@@@@@@@@@@@@@@@@')
sys.path.append('..')
from training import losses
from training.datasets.classifier_dataset import DeepFakeClassifierDataset
from training.losses import WeightedLosses
from training.tools.config import load_config
from training.tools.utils import create_optimizer, AverageMeter
from training.transforms.albu import IsotropicResize
from training.zoo import classifiers
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"
import cv2
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
import numpy as np
from albumentations import Compose, RandomBrightnessContrast, \
HorizontalFlip, FancyPCA, HueSaturationValue, OneOf, ToGray, \
ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur
from apex.parallel import DistributedDataParallel, convert_syncbn_model
from tensorboardX import SummaryWriter
from apex import amp
import torch
from torch.backends import cudnn
from torch.nn import DataParallel
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch.distributed as dist
torch.backends.cudnn.benchmark = True
def create_train_transforms(size=300):
return Compose([
ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
GaussNoise(p=0.1),
GaussianBlur(blur_limit=3, p=0.05),
HorizontalFlip(),
OneOf([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
], p=1),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7),
ToGray(p=0.2),
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),
]
)
def create_val_transforms(size=300):
return Compose([
IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
])
def main():
parser = argparse.ArgumentParser("PyTorch Xview Pipeline")
arg = parser.add_argument
arg('--config', metavar='CONFIG_FILE', help='path to configuration file')
arg('--workers', type=int, default=6, help='number of cpu threads to use')
arg('--gpu', type=str, default='0', help='List of GPUs for parallel training, e.g. 0,1,2,3')
arg('--output-dir', type=str, default='weights/')
arg('--resume', type=str, default='')
arg('--fold', type=int, default=0)
arg('--prefix', type=str, default='classifier_')
arg('--data-dir', type=str, default="/mnt/sota/datasets/deepfake")
arg('--folds-csv', type=str, default='folds.csv')
arg('--crops-dir', type=str, default='crops')
arg('--label-smoothing', type=float, default=0.01)
arg('--logdir', type=str, default='logs')
arg('--zero-score', action='store_true', default=False)
arg('--from-zero', action='store_true', default=False)
arg('--distributed', action='store_true', default=False)
arg('--freeze-epochs', type=int, default=0)
arg("--local_rank", default=0, type=int)
arg("--seed", default=777, type=int)
arg("--padding-part", default=3, type=int)
arg("--opt-level", default='O1', type=str)
arg("--test_every", type=int, default=1)
arg("--no-oversample", action="store_true")
arg("--no-hardcore", action="store_true")
arg("--only-changed-frames", action="store_true")
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
else:
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
conf = load_config(args.config)
model = classifiers.__dict__[conf['network']](encoder=conf['encoder'])
model = model.cuda()
if args.distributed:
model = convert_syncbn_model(model)
ohem = conf.get("ohem_samples", None)
reduction = "mean"
if ohem:
reduction = "none"
loss_fn = []
weights = []
for loss_name, weight in conf["losses"].items():
loss_fn.append(losses.__dict__[loss_name](reduction=reduction).cuda())
weights.append(weight)
loss = WeightedLosses(loss_fn, weights)
loss_functions = {"classifier_loss": loss}
optimizer, scheduler = create_optimizer(conf['optimizer'], model)
bce_best = 100
start_epoch = 0
batch_size = conf['optimizer']['batch_size']
data_train = DeepFakeClassifierDataset(mode="train",
oversample_real=not args.no_oversample,
fold=args.fold,
padding_part=args.padding_part,
hardcore=not args.no_hardcore,
crops_dir=args.crops_dir,
data_path=args.data_dir,
label_smoothing=args.label_smoothing,
folds_csv=args.folds_csv,
transforms=create_train_transforms(conf["size"]),
normalize=conf.get("normalize", None))
data_val = DeepFakeClassifierDataset(mode="val",
fold=args.fold,
padding_part=args.padding_part,
crops_dir=args.crops_dir,
data_path=args.data_dir,
folds_csv=args.folds_csv,
transforms=create_val_transforms(conf["size"]),
normalize=conf.get("normalize", None))
val_data_loader = DataLoader(data_val, batch_size=batch_size * 2, num_workers=args.workers, shuffle=False,
pin_memory=False)
os.makedirs(args.logdir, exist_ok=True)
summary_writer = SummaryWriter(args.logdir + '/' + conf.get("prefix", args.prefix) + conf['encoder'] + "_" + str(args.fold))
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
state_dict = checkpoint['state_dict']
state_dict = {k[7:]: w for k, w in state_dict.items()}
model.load_state_dict(state_dict, strict=False)
if not args.from_zero:
start_epoch = checkpoint['epoch']
if not args.zero_score:
bce_best = checkpoint.get('bce_best', 0)
print("=> loaded checkpoint '{}' (epoch {}, bce_best {})"
.format(args.resume, checkpoint['epoch'], checkpoint['bce_best']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.from_zero:
start_epoch = 0
current_epoch = start_epoch
if conf['fp16']:
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.opt_level,
loss_scale='dynamic')
snapshot_name = "{}{}_{}_{}".format(conf.get("prefix", args.prefix), conf['network'], conf['encoder'], args.fold)
if args.distributed:
model = DistributedDataParallel(model, delay_allreduce=True)
else:
model = DataParallel(model).cuda()
data_val.reset(1, args.seed)
max_epochs = conf['optimizer']['schedule']['epochs']
for epoch in range(start_epoch, max_epochs):
data_train.reset(epoch, args.seed)
train_sampler = None
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(data_train)
train_sampler.set_epoch(epoch)
if epoch < args.freeze_epochs:
print("Freezing encoder!!!")
model.module.encoder.eval()
for p in model.module.encoder.parameters():
p.requires_grad = False
else:
model.module.encoder.train()
for p in model.module.encoder.parameters():
p.requires_grad = True
train_data_loader = DataLoader(data_train, batch_size=batch_size, num_workers=args.workers,
shuffle=train_sampler is None, sampler=train_sampler, pin_memory=False,
drop_last=True)
train_epoch(current_epoch, loss_functions, model, optimizer, scheduler, train_data_loader, summary_writer, conf,
args.local_rank, args.only_changed_frames)
model = model.eval()
if args.local_rank == 0:
torch.save({
'epoch': current_epoch + 1,
'state_dict': model.state_dict(),
'bce_best': bce_best,
}, args.output_dir + '/' + snapshot_name + "_last")
torch.save({
'epoch': current_epoch + 1,
'state_dict': model.state_dict(),
'bce_best': bce_best,
}, args.output_dir + snapshot_name + "_{}".format(current_epoch))
if (epoch + 1) % args.test_every == 0:
bce_best = evaluate_val(args, val_data_loader, bce_best, model,
snapshot_name=snapshot_name,
current_epoch=current_epoch,
summary_writer=summary_writer)
current_epoch += 1
def evaluate_val(args, data_val, bce_best, model, snapshot_name, current_epoch, summary_writer):
print("Test phase")
model = model.eval()
bce, probs, targets = validate(model, data_loader=data_val)
if args.local_rank == 0:
summary_writer.add_scalar('val/bce', float(bce), global_step=current_epoch)
if bce < bce_best:
print("Epoch {} improved from {} to {}".format(current_epoch, bce_best, bce))
if args.output_dir is not None:
torch.save({
'epoch': current_epoch + 1,
'state_dict': model.state_dict(),
'bce_best': bce,
}, args.output_dir + snapshot_name + "_best_dice")
bce_best = bce
with open("predictions_{}.json".format(args.fold), "w") as f:
json.dump({"probs": probs, "targets": targets}, f)
torch.save({
'epoch': current_epoch + 1,
'state_dict': model.state_dict(),
'bce_best': bce_best,
}, args.output_dir + snapshot_name + "_last")
print("Epoch: {} bce: {}, bce_best: {}".format(current_epoch, bce, bce_best))
return bce_best
def validate(net, data_loader, prefix=""):
probs = defaultdict(list)
targets = defaultdict(list)
with torch.no_grad():
for sample in tqdm(data_loader):
imgs = sample["image"].cuda()
img_names = sample["img_name"]
labels = sample["labels"].cuda().float()
out = net(imgs)
labels = labels.cpu().numpy()
preds = torch.sigmoid(out).cpu().numpy()
for i in range(out.shape[0]):
video, img_id = img_names[i].split("/")
probs[video].append(preds[i].tolist())
targets[video].append(labels[i].tolist())
data_x = []
data_y = []
for vid, score in probs.items():
score = np.array(score)
lbl = targets[vid]
score = np.mean(score)
lbl = np.mean(lbl)
data_x.append(score)
data_y.append(lbl)
y = np.array(data_y)
x = np.array(data_x)
fake_idx = y > 0.1
real_idx = y < 0.1
fake_loss = log_loss(y[fake_idx], x[fake_idx], labels=[0, 1])
real_loss = log_loss(y[real_idx], x[real_idx], labels=[0, 1])
print("{}fake_loss".format(prefix), fake_loss)
print("{}real_loss".format(prefix), real_loss)
return (fake_loss + real_loss) / 2, probs, targets
def train_epoch(current_epoch, loss_functions, model, optimizer, scheduler, train_data_loader, summary_writer, conf,
local_rank, only_valid):
losses = AverageMeter()
fake_losses = AverageMeter()
real_losses = AverageMeter()
max_iters = conf["batches_per_epoch"]
print("training epoch {}".format(current_epoch))
model.train()
pbar = tqdm(enumerate(train_data_loader), total=max_iters, desc="Epoch {}".format(current_epoch), ncols=0)
if conf["optimizer"]["schedule"]["mode"] == "epoch":
scheduler.step(current_epoch)
for i, sample in pbar:
imgs = sample["image"].cuda()
labels = sample["labels"].cuda().float()
out_labels = model(imgs)
if only_valid:
valid_idx = sample["valid"].cuda().float() > 0
out_labels = out_labels[valid_idx]
labels = labels[valid_idx]
if labels.size(0) == 0:
continue
fake_loss = 0
real_loss = 0
fake_idx = labels > 0.5
real_idx = labels <= 0.5
ohem = conf.get("ohem_samples", None)
if torch.sum(fake_idx * 1) > 0:
fake_loss = loss_functions["classifier_loss"](out_labels[fake_idx], labels[fake_idx])
if torch.sum(real_idx * 1) > 0:
real_loss = loss_functions["classifier_loss"](out_labels[real_idx], labels[real_idx])
if ohem:
fake_loss = topk(fake_loss, k=min(ohem, fake_loss.size(0)), sorted=False)[0].mean()
real_loss = topk(real_loss, k=min(ohem, real_loss.size(0)), sorted=False)[0].mean()
loss = (fake_loss + real_loss) / 2
losses.update(loss.item(), imgs.size(0))
fake_losses.update(0 if fake_loss == 0 else fake_loss.item(), imgs.size(0))
real_losses.update(0 if real_loss == 0 else real_loss.item(), imgs.size(0))
optimizer.zero_grad()
pbar.set_postfix({"lr": float(scheduler.get_lr()[-1]), "epoch": current_epoch, "loss": losses.avg,
"fake_loss": fake_losses.avg, "real_loss": real_losses.avg})
if conf['fp16']:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1)
optimizer.step()
torch.cuda.synchronize()
if conf["optimizer"]["schedule"]["mode"] in ("step", "poly"):
scheduler.step(i + current_epoch * max_iters)
if i == max_iters - 1:
break
pbar.close()
if local_rank == 0:
for idx, param_group in enumerate(optimizer.param_groups):
lr = param_group['lr']
summary_writer.add_scalar('group{}/lr'.format(idx), float(lr), global_step=current_epoch)
summary_writer.add_scalar('train/loss', float(losses.avg), global_step=current_epoch)
if __name__ == '__main__':
main()
|