File size: 15,590 Bytes
c426e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import json
import os
from collections import defaultdict

from sklearn.metrics import log_loss
from torch import topk

import sys
print('@@@@@@@@@@@@@@@@@@')
sys.path.append('..')

from training import losses
from training.datasets.classifier_dataset import DeepFakeClassifierDataset
from training.losses import WeightedLosses
from training.tools.config import load_config
from training.tools.utils import create_optimizer, AverageMeter
from training.transforms.albu import IsotropicResize
from training.zoo import classifiers

os.environ["MKL_NUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
os.environ["OMP_NUM_THREADS"] = "1"

import cv2

cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
import numpy as np
from albumentations import Compose, RandomBrightnessContrast, \
    HorizontalFlip, FancyPCA, HueSaturationValue, OneOf, ToGray, \
    ShiftScaleRotate, ImageCompression, PadIfNeeded, GaussNoise, GaussianBlur

from apex.parallel import DistributedDataParallel, convert_syncbn_model
from tensorboardX import SummaryWriter

from apex import amp

import torch
from torch.backends import cudnn
from torch.nn import DataParallel
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch.distributed as dist

torch.backends.cudnn.benchmark = True

def create_train_transforms(size=300):
    return Compose([
        ImageCompression(quality_lower=60, quality_upper=100, p=0.5),
        GaussNoise(p=0.1),
        GaussianBlur(blur_limit=3, p=0.05),
        HorizontalFlip(),
        OneOf([
            IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
            IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
            IsotropicResize(max_side=size, interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
        ], p=1),
        PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
        OneOf([RandomBrightnessContrast(), FancyPCA(), HueSaturationValue()], p=0.7),
        ToGray(p=0.2),
        ShiftScaleRotate(shift_limit=0.1, scale_limit=0.2, rotate_limit=10, border_mode=cv2.BORDER_CONSTANT, p=0.5),
    ]
    )


def create_val_transforms(size=300):
    return Compose([
        IsotropicResize(max_side=size, interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
        PadIfNeeded(min_height=size, min_width=size, border_mode=cv2.BORDER_CONSTANT),
    ])


def main():
    parser = argparse.ArgumentParser("PyTorch Xview Pipeline")
    arg = parser.add_argument
    arg('--config', metavar='CONFIG_FILE', help='path to configuration file')
    arg('--workers', type=int, default=6, help='number of cpu threads to use')
    arg('--gpu', type=str, default='0', help='List of GPUs for parallel training, e.g. 0,1,2,3')
    arg('--output-dir', type=str, default='weights/')
    arg('--resume', type=str, default='')
    arg('--fold', type=int, default=0)
    arg('--prefix', type=str, default='classifier_')
    arg('--data-dir', type=str, default="/mnt/sota/datasets/deepfake")
    arg('--folds-csv', type=str, default='folds.csv')
    arg('--crops-dir', type=str, default='crops')
    arg('--label-smoothing', type=float, default=0.01)
    arg('--logdir', type=str, default='logs')
    arg('--zero-score', action='store_true', default=False)
    arg('--from-zero', action='store_true', default=False)
    arg('--distributed', action='store_true', default=False)
    arg('--freeze-epochs', type=int, default=0)
    arg("--local_rank", default=0, type=int)
    arg("--seed", default=777, type=int)
    arg("--padding-part", default=3, type=int)
    arg("--opt-level", default='O1', type=str)
    arg("--test_every", type=int, default=1)
    arg("--no-oversample", action="store_true")
    arg("--no-hardcore", action="store_true")
    arg("--only-changed-frames", action="store_true")

    args = parser.parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    else:
        os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    cudnn.benchmark = True

    conf = load_config(args.config)
    model = classifiers.__dict__[conf['network']](encoder=conf['encoder'])

    model = model.cuda()
    if args.distributed:
        model = convert_syncbn_model(model)
    ohem = conf.get("ohem_samples", None)
    reduction = "mean"
    if ohem:
        reduction = "none"
    loss_fn = []
    weights = []
    for loss_name, weight in conf["losses"].items():
        loss_fn.append(losses.__dict__[loss_name](reduction=reduction).cuda())
        weights.append(weight)
    loss = WeightedLosses(loss_fn, weights)
    loss_functions = {"classifier_loss": loss}
    optimizer, scheduler = create_optimizer(conf['optimizer'], model)
    bce_best = 100
    start_epoch = 0
    batch_size = conf['optimizer']['batch_size']

    data_train = DeepFakeClassifierDataset(mode="train",
                                           oversample_real=not args.no_oversample,
                                           fold=args.fold,
                                           padding_part=args.padding_part,
                                           hardcore=not args.no_hardcore,
                                           crops_dir=args.crops_dir,
                                           data_path=args.data_dir,
                                           label_smoothing=args.label_smoothing,
                                           folds_csv=args.folds_csv,
                                           transforms=create_train_transforms(conf["size"]),
                                           normalize=conf.get("normalize", None))
    data_val = DeepFakeClassifierDataset(mode="val",
                                         fold=args.fold,
                                         padding_part=args.padding_part,
                                         crops_dir=args.crops_dir,
                                         data_path=args.data_dir,
                                         folds_csv=args.folds_csv,
                                         transforms=create_val_transforms(conf["size"]),
                                         normalize=conf.get("normalize", None))
    val_data_loader = DataLoader(data_val, batch_size=batch_size * 2, num_workers=args.workers, shuffle=False,
                                 pin_memory=False)
    os.makedirs(args.logdir, exist_ok=True)
    summary_writer = SummaryWriter(args.logdir + '/' + conf.get("prefix", args.prefix) + conf['encoder'] + "_" + str(args.fold))
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location='cpu')
            state_dict = checkpoint['state_dict']
            state_dict = {k[7:]: w for k, w in state_dict.items()}
            model.load_state_dict(state_dict, strict=False)
            if not args.from_zero:
                start_epoch = checkpoint['epoch']
                if not args.zero_score:
                    bce_best = checkpoint.get('bce_best', 0)
            print("=> loaded checkpoint '{}' (epoch {}, bce_best {})"
                  .format(args.resume, checkpoint['epoch'], checkpoint['bce_best']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
    if args.from_zero:
        start_epoch = 0
    current_epoch = start_epoch

    if conf['fp16']:
        model, optimizer = amp.initialize(model, optimizer,
                                          opt_level=args.opt_level,
                                          loss_scale='dynamic')

    snapshot_name = "{}{}_{}_{}".format(conf.get("prefix", args.prefix), conf['network'], conf['encoder'], args.fold)

    if args.distributed:
        model = DistributedDataParallel(model, delay_allreduce=True)
    else:
        model = DataParallel(model).cuda()
    data_val.reset(1, args.seed)
    max_epochs = conf['optimizer']['schedule']['epochs']
    for epoch in range(start_epoch, max_epochs):
        data_train.reset(epoch, args.seed)
        train_sampler = None
        if args.distributed:
            train_sampler = torch.utils.data.distributed.DistributedSampler(data_train)
            train_sampler.set_epoch(epoch)
        if epoch < args.freeze_epochs:
            print("Freezing encoder!!!")
            model.module.encoder.eval()
            for p in model.module.encoder.parameters():
                p.requires_grad = False
        else:
            model.module.encoder.train()
            for p in model.module.encoder.parameters():
                p.requires_grad = True

        train_data_loader = DataLoader(data_train, batch_size=batch_size, num_workers=args.workers,
                                       shuffle=train_sampler is None, sampler=train_sampler, pin_memory=False,
                                       drop_last=True)

        train_epoch(current_epoch, loss_functions, model, optimizer, scheduler, train_data_loader, summary_writer, conf,
                    args.local_rank, args.only_changed_frames)
        model = model.eval()

        if args.local_rank == 0:
            torch.save({
                'epoch': current_epoch + 1,
                'state_dict': model.state_dict(),
                'bce_best': bce_best,
            }, args.output_dir + '/' + snapshot_name + "_last")
            torch.save({
                'epoch': current_epoch + 1,
                'state_dict': model.state_dict(),
                'bce_best': bce_best,
            }, args.output_dir + snapshot_name + "_{}".format(current_epoch))
            if (epoch + 1) % args.test_every == 0:
                bce_best = evaluate_val(args, val_data_loader, bce_best, model,
                                        snapshot_name=snapshot_name,
                                        current_epoch=current_epoch,
                                        summary_writer=summary_writer)
        current_epoch += 1


def evaluate_val(args, data_val, bce_best, model, snapshot_name, current_epoch, summary_writer):
    print("Test phase")
    model = model.eval()

    bce, probs, targets = validate(model, data_loader=data_val)
    if args.local_rank == 0:
        summary_writer.add_scalar('val/bce', float(bce), global_step=current_epoch)
        if bce < bce_best:
            print("Epoch {} improved from {} to {}".format(current_epoch, bce_best, bce))
            if args.output_dir is not None:
                torch.save({
                    'epoch': current_epoch + 1,
                    'state_dict': model.state_dict(),
                    'bce_best': bce,
                }, args.output_dir + snapshot_name + "_best_dice")
            bce_best = bce
            with open("predictions_{}.json".format(args.fold), "w") as f:
                json.dump({"probs": probs, "targets": targets}, f)
        torch.save({
            'epoch': current_epoch + 1,
            'state_dict': model.state_dict(),
            'bce_best': bce_best,
        }, args.output_dir + snapshot_name + "_last")
        print("Epoch: {} bce: {}, bce_best: {}".format(current_epoch, bce, bce_best))
    return bce_best


def validate(net, data_loader, prefix=""):
    probs = defaultdict(list)
    targets = defaultdict(list)

    with torch.no_grad():
        for sample in tqdm(data_loader):
            imgs = sample["image"].cuda()
            img_names = sample["img_name"]
            labels = sample["labels"].cuda().float()
            out = net(imgs)
            labels = labels.cpu().numpy()
            preds = torch.sigmoid(out).cpu().numpy()
            for i in range(out.shape[0]):
                video, img_id = img_names[i].split("/")
                probs[video].append(preds[i].tolist())
                targets[video].append(labels[i].tolist())
    data_x = []
    data_y = []
    for vid, score in probs.items():
        score = np.array(score)
        lbl = targets[vid]

        score = np.mean(score)
        lbl = np.mean(lbl)
        data_x.append(score)
        data_y.append(lbl)
    y = np.array(data_y)
    x = np.array(data_x)
    fake_idx = y > 0.1
    real_idx = y < 0.1
    fake_loss = log_loss(y[fake_idx], x[fake_idx], labels=[0, 1])
    real_loss = log_loss(y[real_idx], x[real_idx], labels=[0, 1])
    print("{}fake_loss".format(prefix), fake_loss)
    print("{}real_loss".format(prefix), real_loss)

    return (fake_loss + real_loss) / 2, probs, targets


def train_epoch(current_epoch, loss_functions, model, optimizer, scheduler, train_data_loader, summary_writer, conf,
                local_rank, only_valid):
    losses = AverageMeter()
    fake_losses = AverageMeter()
    real_losses = AverageMeter()
    max_iters = conf["batches_per_epoch"]
    print("training epoch {}".format(current_epoch))
    model.train()
    pbar = tqdm(enumerate(train_data_loader), total=max_iters, desc="Epoch {}".format(current_epoch), ncols=0)
    if conf["optimizer"]["schedule"]["mode"] == "epoch":
        scheduler.step(current_epoch)
    for i, sample in pbar:
        imgs = sample["image"].cuda()
        labels = sample["labels"].cuda().float()
        out_labels = model(imgs)
        if only_valid:
            valid_idx = sample["valid"].cuda().float() > 0
            out_labels = out_labels[valid_idx]
            labels = labels[valid_idx]
            if labels.size(0) == 0:
                continue

        fake_loss = 0
        real_loss = 0
        fake_idx = labels > 0.5
        real_idx = labels <= 0.5

        ohem = conf.get("ohem_samples", None)
        if torch.sum(fake_idx * 1) > 0:
            fake_loss = loss_functions["classifier_loss"](out_labels[fake_idx], labels[fake_idx])
        if torch.sum(real_idx * 1) > 0:
            real_loss = loss_functions["classifier_loss"](out_labels[real_idx], labels[real_idx])
        if ohem:
            fake_loss = topk(fake_loss, k=min(ohem, fake_loss.size(0)), sorted=False)[0].mean()
            real_loss = topk(real_loss, k=min(ohem, real_loss.size(0)), sorted=False)[0].mean()

        loss = (fake_loss + real_loss) / 2
        losses.update(loss.item(), imgs.size(0))
        fake_losses.update(0 if fake_loss == 0 else fake_loss.item(), imgs.size(0))
        real_losses.update(0 if real_loss == 0 else real_loss.item(), imgs.size(0))

        optimizer.zero_grad()
        pbar.set_postfix({"lr": float(scheduler.get_lr()[-1]), "epoch": current_epoch, "loss": losses.avg,
                          "fake_loss": fake_losses.avg, "real_loss": real_losses.avg})

        if conf['fp16']:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1)
        optimizer.step()
        torch.cuda.synchronize()
        if conf["optimizer"]["schedule"]["mode"] in ("step", "poly"):
            scheduler.step(i + current_epoch * max_iters)
        if i == max_iters - 1:
            break
    pbar.close()
    if local_rank == 0:
        for idx, param_group in enumerate(optimizer.param_groups):
            lr = param_group['lr']
            summary_writer.add_scalar('group{}/lr'.format(idx), float(lr), global_step=current_epoch)
        summary_writer.add_scalar('train/loss', float(losses.avg), global_step=current_epoch)


if __name__ == '__main__':
    main()