File size: 5,279 Bytes
a16eb78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
'''

Necessary Imports

'''

from fastapi import FastAPI, UploadFile, File, HTTPException,Form
from fastapi.middleware.cors import CORSMiddleware
from langchain.text_splitter import RecursiveCharacterTextSplitter
from postgres import PostgresChatMessageHistory

from langchain_community.document_loaders import PyPDFLoader
from langchain_postgres.vectorstores import PGVector
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_google_genai import GoogleGenerativeAIEmbeddings

from typing import Dict
from langchain_openai import ChatOpenAI
from prompt import prompt,system_prompt
import psycopg
import uuid
import os
from custom_message import CustomMessage

from dotenv import load_dotenv
import os
from io import BytesIO
from pypdf import PdfReader
from langchain.docstore.document import Document

vector_store = None

# LOADING ENVIRONMENT VARIABLES

load_dotenv()

# INSTANTIATING THE APP
app = FastAPI()
llm = ChatOpenAI(model="gpt-4o",
    temperature=0.2,
    max_tokens=None,
    timeout=None,
    max_retries=1)

# ALLOWING CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# INITIALIZING THE EMBEDDING MODEL
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=300,
    length_function=len,
)


@app.get("/")
def greeting():
    return {'response':'success','status code':200}

# PDF UPLOAD ROUTE
@app.post("/upload")
async def upload_pdf(file: UploadFile = File(...), collection_name: str = Form(...)):
    """

    Upload and process a PDF file, storing its embeddings in the vector database.

    """
    if not file.filename.endswith('.pdf'):
        raise HTTPException(status_code=400, detail="Only PDF files are allowed")
    
    try:
        # Read PDF content directly into memory
        pdf_content = await file.read()
        pdf_file = BytesIO(pdf_content)
        pdf_reader = PdfReader(pdf_file)
        
        # Extract text from PDF
        documents = []
        for page_num, page in enumerate(pdf_reader.pages):
            text = page.extract_text()
            # Create a Document object with metadata
            doc = Document(
                page_content=text,
                metadata={"page": page_num + 1, "source": file.filename}
            )
            documents.append(doc)
        
        # Split documents into chunks
        texts = text_splitter.split_documents(documents)
        try:
           
        
           global vector_store 
           vector_store = PGVector.from_documents(
            documents=texts,
            embedding=embeddings,
            connection=os.environ['CONNECTION_STRING'],
            collection_name=collection_name,
            use_jsonb=True,

            
        )
           
        
        except Exception as e:
            raise("Error in establishing the connection with DB: {e}")
        
        
        
        return {"message": "PDF processed successfully", "collection_name": file.filename.replace('.pdf', '')}
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    

@app.post("/query")
async def upload_pdf(query: str = Form(...),collection_name:str = Form(...),username:str = Form(...),table_name:str = Form(...)):
    try:
        global vector_store
        if vector_store == None :
            vector_store = PGVector(
            embeddings=embeddings,
            connection=os.environ['CONNECTION_STRING'],
            collection_name=collection_name,
            use_jsonb=True,
            
        )
        
        retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
        
        
        
        
        question_answer_chain = create_stuff_documents_chain(llm, prompt)
        
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)
        
        response = rag_chain.invoke({"input":query})['answer']
        
        sync_connection = psycopg.connect(os.environ['CONNECTION_STRING'])
        session_id = str(uuid.uuid4())
        
        chat_history = PostgresChatMessageHistory(
            table_name,
            session_id,
            username,
            sync_connection=sync_connection
        )
        
        
        try:
            custom_message = CustomMessage(content=f"SYSTEM_PROMPT:{system_prompt}\n\nHUMAN_MESSAGE:{query}\n\nAI_RESPONSE:{response}")

            chat_history.add_message(custom_message)
        except Exception as e:
            print(e)
        print("Ended")
        return {
            "relevant docs":response, 
            "session_id":session_id
            
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))




# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)