Spaces:
Running
Running
File size: 2,224 Bytes
01b8e8e dd7488f 01b8e8e 39503cb 01b8e8e dd7488f 01b8e8e 39503cb 101be32 39503cb 01b8e8e f65e26a 6c3736e f65e26a 6c3736e 39503cb 01b8e8e dd7488f 01b8e8e 39503cb dd7488f 39503cb 01b8e8e 39503cb 101be32 01b8e8e 39503cb 01b8e8e 39503cb 01b8e8e 39503cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import streamlit as st
from interface.utils import get_pipelines
from interface.draw_pipelines import get_pipeline_graph
def component_select_pipeline(container):
pipeline_names, pipeline_funcs = get_pipelines()
with container:
selected_pipeline = st.selectbox(
"Select pipeline",
pipeline_names,
index=pipeline_names.index("Keyword Search")
if "Keyword Search" in pipeline_names
else 0,
)
if (
st.session_state["pipeline"] is None
or st.session_state["pipeline"]["name"] != selected_pipeline
):
(
search_pipeline,
index_pipeline,
) = pipeline_funcs[pipeline_names.index(selected_pipeline)]()
st.session_state["pipeline"] = {
"name": selected_pipeline,
"search_pipeline": search_pipeline,
"index_pipeline": index_pipeline,
}
def component_show_pipeline(pipeline):
"""Draw the pipeline"""
with st.expander("Show pipeline"):
fig = get_pipeline_graph(pipeline)
st.plotly_chart(fig, use_container_width=True)
def component_show_search_result(container, results):
with container:
for idx, document in enumerate(results):
st.markdown(f"### Match {idx+1}")
st.markdown(f"**Text**: {document['text']}")
st.markdown(f"**Document**: {document['id']}")
if document["score"] is not None:
st.markdown(f"**Score**: {document['score']:.3f}")
st.markdown("---")
def component_text_input(container):
"""Draw the Text Input widget"""
with container:
texts = []
doc_id = 1
with st.expander("Enter documents"):
while True:
text = st.text_input(f"Document {doc_id}", key=doc_id)
if text != "":
texts.append({"text": text})
doc_id += 1
st.markdown("---")
else:
break
corpus = [
{"text": doc["text"], "id": doc_id} for doc_id, doc in enumerate(texts)
]
return corpus
|