Spaces:
Running
Running
File size: 8,943 Bytes
dd7488f 236ecdd e4aa90a 236ecdd 6c3736e f65e26a 6c3736e f65e26a 6c3736e f65e26a 6c3736e f65e26a 6c3736e f65e26a 6c3736e 236ecdd e4aa90a 236ecdd e4aa90a 236ecdd e4aa90a 236ecdd dd7488f e4aa90a 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f 8de7c36 dd7488f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import math
from typing import List
from itertools import chain
import networkx as nx
import plotly.graph_objs as go
import numpy as np
def get_pipeline_graph(pipeline):
# Controls for how the graph is drawn
nodeColor = "#ffbf00"
nodeSize = 40
lineWidth = 2
lineColor = "#ffffff"
G = pipeline.graph
current_coordinate = (0, len(set([edge[0] for edge in G.edges()])) + 1)
# Transform G.edges into {node : all_connected_nodes} format
node_connections = {}
for in_node, out_node in G.edges():
if in_node in node_connections:
node_connections[in_node].append(out_node)
else:
node_connections[in_node] = [out_node]
# Get node coordinates/pos
fixed_pos_nodes = {}
for idx, (in_node, out_nodes) in enumerate(node_connections.items()):
if in_node not in fixed_pos_nodes:
fixed_pos_nodes[in_node] = np.array(
[current_coordinate[0], current_coordinate[1]]
)
current_coordinate = (current_coordinate[0], current_coordinate[1] - 1)
# If more than 1 out node, then branch out in X coordinate
if len(out_nodes) > 1:
# if length is odd
if (len(out_nodes) % 2) != 0:
middle_node = out_nodes[round(len(out_nodes) / 2, 0) - 1]
fixed_pos_nodes[middle_node] = np.array(
[current_coordinate[0], current_coordinate[1]]
)
out_nodes = [n for n in out_nodes if n != middle_node]
correction_coordinate = -len(out_nodes) / 2
for out_node in out_nodes:
fixed_pos_nodes[out_node] = np.array(
[
int(current_coordinate[0] + correction_coordinate),
int(current_coordinate[1]),
]
)
if correction_coordinate == -1:
correction_coordinate += 1
correction_coordinate += 1
current_coordinate = (current_coordinate[0], current_coordinate[1] - 1)
elif len(node_connections) - 1 == idx:
fixed_pos_nodes[out_nodes[0]] = np.array(
[current_coordinate[0], current_coordinate[1]]
)
pos = nx.spring_layout(G, pos=fixed_pos_nodes, fixed=G.nodes(), seed=42)
for node in G.nodes:
G.nodes[node]["pos"] = list(pos[node])
# Make list of nodes for plotly
node_x = []
node_y = []
node_name = []
for node in G.nodes():
node_name.append(G.nodes[node]["component"].name)
x, y = G.nodes[node]["pos"]
node_x.append(x)
node_y.append(y)
# Make a list of edges for plotly, including line segments that result in arrowheads
edge_x = []
edge_y = []
for edge in G.edges():
start = G.nodes[edge[0]]["pos"]
end = G.nodes[edge[1]]["pos"]
# addEdge(start, end, edge_x, edge_y, lengthFrac=1, arrowPos = None, arrowLength=0.025, arrowAngle = 30, dotSize=20)
edge_x, edge_y = addEdge(
start,
end,
edge_x,
edge_y,
lengthFrac=0.5,
arrowPos="end",
arrowLength=0.04,
arrowAngle=40,
dotSize=nodeSize,
)
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=lineWidth, color=lineColor),
hoverinfo="none",
mode="lines",
)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode="markers+text",
textposition="middle right",
hoverinfo="none",
text=node_name,
marker=dict(showscale=False, color=nodeColor, size=nodeSize),
textfont=dict(size=18),
)
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
),
)
fig.update_layout(
yaxis=dict(scaleanchor="x", scaleratio=1), plot_bgcolor="rgb(14,17,23)"
)
return fig
def addEdge(
start,
end,
edge_x,
edge_y,
lengthFrac=1,
arrowPos=None,
arrowLength=0.025,
arrowAngle=30,
dotSize=20,
):
# Get start and end cartesian coordinates
x0, y0 = start
x1, y1 = end
# Incorporate the fraction of this segment covered by a dot into total reduction
length = math.sqrt((x1 - x0) ** 2 + (y1 - y0) ** 2)
dotSizeConversion = 0.0565 / 20 # length units per dot size
convertedDotDiameter = dotSize * dotSizeConversion
lengthFracReduction = convertedDotDiameter / length
lengthFrac = lengthFrac - lengthFracReduction
# If the line segment should not cover the entire distance, get actual start and end coords
skipX = (x1 - x0) * (1 - lengthFrac)
skipY = (y1 - y0) * (1 - lengthFrac)
x0 = x0 + skipX / 2
x1 = x1 - skipX / 2
y0 = y0 + skipY / 2
y1 = y1 - skipY / 2
# Append line corresponding to the edge
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(
None
) # Prevents a line being drawn from end of this edge to start of next edge
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
# Draw arrow
if not arrowPos == None:
# Find the point of the arrow; assume is at end unless told middle
pointx = x1
pointy = y1
eta = math.degrees(math.atan((x1 - x0) / (y1 - y0))) if y1 != y0 else 90.0
if arrowPos == "middle" or arrowPos == "mid":
pointx = x0 + (x1 - x0) / 2
pointy = y0 + (y1 - y0) / 2
# Find the directions the arrows are pointing
signx = (x1 - x0) / abs(x1 - x0) if x1 != x0 else +1 # verify this once
signy = (y1 - y0) / abs(y1 - y0) if y1 != y0 else +1 # verified
# Append first arrowhead
dx = arrowLength * math.sin(math.radians(eta + arrowAngle))
dy = arrowLength * math.cos(math.radians(eta + arrowAngle))
edge_x.append(pointx)
edge_x.append(pointx - signx**2 * signy * dx)
edge_x.append(None)
edge_y.append(pointy)
edge_y.append(pointy - signx**2 * signy * dy)
edge_y.append(None)
# And second arrowhead
dx = arrowLength * math.sin(math.radians(eta - arrowAngle))
dy = arrowLength * math.cos(math.radians(eta - arrowAngle))
edge_x.append(pointx)
edge_x.append(pointx - signx**2 * signy * dx)
edge_x.append(None)
edge_y.append(pointy)
edge_y.append(pointy - signx**2 * signy * dy)
edge_y.append(None)
return edge_x, edge_y
def add_arrows(
source_x: List[float],
target_x: List[float],
source_y: List[float],
target_y: List[float],
arrowLength=0.025,
arrowAngle=30,
):
pointx = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_x, target_x)))
pointy = list(map(lambda x: x[0] + (x[1] - x[0]) / 2, zip(source_y, target_y)))
etas = list(
map(
lambda x: math.degrees(math.atan((x[1] - x[0]) / (x[3] - x[2]))),
zip(source_x, target_x, source_y, target_y),
)
)
signx = list(
map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_x, target_x))
)
signy = list(
map(lambda x: (x[1] - x[0]) / abs(x[1] - x[0]), zip(source_y, target_y))
)
dx = list(map(lambda x: arrowLength * math.sin(math.radians(x + arrowAngle)), etas))
dy = list(map(lambda x: arrowLength * math.cos(math.radians(x + arrowAngle)), etas))
none_spacer = [None for _ in range(len(pointx))]
arrow_line_x = list(
map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx))
)
arrow_line_y = list(
map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy))
)
arrow_line_1x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
arrow_line_1y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))
dx = list(map(lambda x: arrowLength * math.sin(math.radians(x - arrowAngle)), etas))
dy = list(map(lambda x: arrowLength * math.cos(math.radians(x - arrowAngle)), etas))
none_spacer = [None for _ in range(len(pointx))]
arrow_line_x = list(
map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointx, signx, signy, dx))
)
arrow_line_y = list(
map(lambda x: x[0] - x[1] ** 2 * x[2] * x[3], zip(pointy, signx, signy, dy))
)
arrow_line_2x_coords = list(chain(*zip(pointx, arrow_line_x, none_spacer)))
arrow_line_2y_coords = list(chain(*zip(pointy, arrow_line_y, none_spacer)))
x_arrows = arrow_line_1x_coords + arrow_line_2x_coords
y_arrows = arrow_line_1y_coords + arrow_line_2y_coords
return x_arrows, y_arrows
|