File size: 752 Bytes
1cfefea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# Load Iris dataset
iris = load_iris()
X = iris.data
y = iris.target

# Split dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Define model
model = make_pipeline(StandardScaler(), LogisticRegression(max_iter=1000))

# Train model
model.fit(X_train, y_train)

# Predict
y_pred = model.predict(X_test)

# Evaluate model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)