File size: 10,866 Bytes
c567880
 
 
 
 
025ac5e
 
 
c567880
 
 
025ac5e
c567880
025ac5e
c567880
 
 
 
 
025ac5e
 
 
c567880
 
 
 
 
 
 
 
025ac5e
 
 
 
 
 
 
c567880
 
 
 
 
 
 
 
025ac5e
 
 
c567880
 
 
 
 
 
 
 
025ac5e
 
 
 
 
 
 
c567880
 
5bf42c5
c567880
 
 
5bf42c5
 
c567880
5bf42c5
 
 
 
 
 
 
 
 
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
5bf42c5
c567880
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
68d7e91
c567880
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
 
 
5bf42c5
025ac5e
 
 
c567880
 
 
 
025ac5e
 
 
 
c567880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0",
   "metadata": {
    "id": "0"
   },
   "source": [
    "# Creation of Serialized File From AI Model Output\n",
    "---\n",
    "This notebook demonstrates how to use the AI-assisted data model output (originally just a collection of TSV files) to a serialized file, a [PFB (Portable Format for Bioinformatics)](https://pmc.ncbi.nlm.nih.gov/articles/PMC10035862/) file.\n",
    "\n",
    "PFB is widely used within NIH-funded initiatives that our center is a part of, as a means for efficient storage and transfer of data between systems."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1",
   "metadata": {
    "id": "1"
   },
   "source": [
    "### Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "2",
    "outputId": "93bf3200-e3e2-4607-b7fc-23de90f967e1"
   },
   "outputs": [],
   "source": [
    "%pip install pandas gen3"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3",
   "metadata": {
    "id": "3"
   },
   "source": [
    "We need some helper files to demonstrate this, so pull them in from Huggingface."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4",
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "4",
    "outputId": "ca90e09b-4d66-4019-ea91-4f9694b246ec"
   },
   "outputs": [],
   "source": [
    "!git clone https://huggingface.co/spaces/uc-ctds/llama-data-model-generator-demo\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5",
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd llama-data-model-generator-demo/serialized_file_creation_demo/"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6",
   "metadata": {
    "id": "5"
   },
   "source": [
    "### Imports and Initial Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7",
   "metadata": {
    "id": "6"
   },
   "outputs": [],
   "source": [
    "from utils import *\n",
    "import os\n",
    "from pathlib import Path\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8",
   "metadata": {
    "id": "7"
   },
   "outputs": [],
   "source": [
    "# read in the minimal Gen3 data model scaffold\n",
    "scaffold_file = \"./gen3_dm_scaffold.json\"\n",
    "scaffold = read_schema(scaffold_file)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9",
   "metadata": {
    "id": "8"
   },
   "source": [
    "We are demonstrating the ability to use this against an AI-generated model, but not directly inferencing to get the data model. Instead we're using a Sythnetic Data Contribution (a sample of what a data contributor would provide AND the expected simplified data model). We use these to train and test the AI model. For simplicity, we're using the model here."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "10",
   "metadata": {
    "id": "9"
   },
   "outputs": [],
   "source": [
    "# Find the simplified data model in a Synthetic Data Contribution directory\n",
    "sdm_dir = \"./submitted_genotyping_array.mass_cytometry_image.actionable_mutation\"\n",
    "sdm_file = next(\n",
    "    (f for f in os.listdir(sdm_dir) if f.endswith(\"_jsonschema_dd.json\")), None\n",
    ")\n",
    "sdm_path = os.path.join(sdm_dir, sdm_file)\n",
    "print(sdm_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "11",
   "metadata": {
    "id": "10"
   },
   "outputs": [],
   "source": [
    "sdm = read_schema(schema=sdm_path)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12",
   "metadata": {
    "id": "11"
   },
   "source": [
    "### Creation of Serialized File"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "13",
   "metadata": {
    "id": "12"
   },
   "source": [
    "As of writing, PFB requires a Gen3-style data model, so the next steps are to ensure we can go from the simplified AI model output to a Gen3 data model. Note that in the future we may allow alternative, non-Gen3 models to create such PFBs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14",
   "metadata": {
    "id": "13"
   },
   "outputs": [],
   "source": [
    "## Create a Gen3 data model from the simplified data model\n",
    "\n",
    "gdm = sdm_to_gen3(sdm)  # convert simplified data model nodes into the Gen3-style nodes\n",
    "gdm = merge_scaffold_into_gdm(\n",
    "    gdm, scaffold\n",
    ")  # merge the scaffold into the Gen3-style data model\n",
    "gdm = fix_project(gdm)  # ensure project links to program and has req'd props\n",
    "gdm = add_gen3_required_properties(\n",
    "    gdm\n",
    ")  # add required Gen3 properties to the project node\n",
    "gdm = add_yaml_suffix_to_nodes(gdm)  # ensure all nodes have .yaml suffix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15",
   "metadata": {
    "id": "14"
   },
   "outputs": [],
   "source": [
    "## Write the Gen3-style data model to a JSON file\n",
    "sdm_name = Path(\n",
    "    sdm_path\n",
    ").stem  # get the stem (basename without extension) of the sdm file\n",
    "out_file = os.path.join(sdm_dir, f\"Gen3_{sdm_name}_pfb.json\")\n",
    "write_schema(gdm, out_file)  # write the schema to a file"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16",
   "metadata": {
    "id": "15"
   },
   "source": [
    "Now we have the data model in proper format, we can serialize it into a PFB."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "17",
   "metadata": {
    "id": "16"
   },
   "outputs": [],
   "source": [
    "# Convert the Gen3-style data model to PFB format schema\n",
    "pfb_schema = os.path.join(sdm_dir, Path(out_file).stem + \".avro\")\n",
    "!pfb from -o $pfb_schema dict $out_file"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18",
   "metadata": {
    "id": "17"
   },
   "source": [
    "### PFB Utilities"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "19",
   "metadata": {
    "id": "18"
   },
   "source": [
    "Now we can demonstrate creation of a PFB when you have content for it (in this case in the form of TSV metadata). The above is a PFB which contains only the data model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "20",
   "metadata": {
    "id": "19"
   },
   "outputs": [],
   "source": [
    "# Get a list of TSV files in the sdm_dir\n",
    "tsv_files = [f for f in os.listdir(sdm_dir) if f.endswith(\".tsv\")]\n",
    "tsv_files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21",
   "metadata": {
    "id": "20"
   },
   "outputs": [],
   "source": [
    "# calculate tsv file size and md5sum for each tsv_files\n",
    "for tsv_file in tsv_files:\n",
    "    tsv_path = os.path.join(sdm_dir, tsv_file)\n",
    "    file_size = os.path.getsize(tsv_path)\n",
    "    # get the md5sum of the TSV file using md5 bash command\n",
    "    md5sum = get_md5sum(tsv_path)\n",
    "    tsv_metadata = {\n",
    "        \"submitter_id\": \"actionable_mutation_metadata.tsv\",\n",
    "        \"file_format\": \"TSV\",\n",
    "        \"file_name\": \"actionable_mutation_metadata.tsv\",\n",
    "        \"file_size\": file_size,\n",
    "        \"md5sum\": md5sum,\n",
    "    }\n",
    "    os.makedirs(\n",
    "        os.path.join(sdm_dir, \"tsv_metadata\"), exist_ok=True\n",
    "    )  # create the tsv_metadata directory if it doesn't exist\n",
    "    tsv_metadata_stem = Path(tsv_file).stem\n",
    "    if tsv_metadata_stem.endswith(\"_metadata\"):\n",
    "        tsv_metadata_stem = tsv_metadata_stem.replace(\"_metadata\", \".json\")\n",
    "    elif tsv_metadata_stem.endswith(\"_file_manifest\"):\n",
    "        tsv_metadata_stem = tsv_metadata_stem.replace(\"_file_manifest\", \".json\")\n",
    "    tsv_metadata_file = os.path.join(sdm_dir, \"tsv_metadata\", tsv_metadata_stem)\n",
    "    with open(tsv_metadata_file, \"w\") as f:\n",
    "        json.dump(tsv_metadata, f, indent=4)\n",
    "    print(f\"\\tTSV metadata written to {tsv_metadata_file}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "22",
   "metadata": {
    "id": "21"
   },
   "outputs": [],
   "source": [
    "%ls -l $sdm_dir/tsv_metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "23",
   "metadata": {
    "id": "22"
   },
   "outputs": [],
   "source": [
    "tsv_metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "24",
   "metadata": {
    "id": "23"
   },
   "outputs": [],
   "source": [
    "pfb_data = os.path.join(sdm_dir, Path(out_file).stem + \"_data.avro\")\n",
    "!pfb from -o $pfb_data json -s $pfb_schema --program DEV --project test $sdm_dir/tsv_metadata\n",
    "if Path(pfb_data).exists():\n",
    "    print(f\"PFB containing TSV files written to:\\n{pfb_data}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "25",
   "metadata": {
    "id": "24"
   },
   "source": [
    "PFB contains a utility to convert from the serialized format to more readable and workable files, including TSVs. Here we demonstrate that utility:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "26",
   "metadata": {
    "id": "25"
   },
   "outputs": [],
   "source": [
    "!gen3 pfb to -i $pfb_data tsv # convert the PFB file to TSV format"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "27",
   "metadata": {
    "id": "26"
   },
   "outputs": [],
   "source": [
    "!gen3 pfb show -i $pfb_data # show the contents of the PFB file"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "28",
   "metadata": {
    "id": "27"
   },
   "outputs": [],
   "source": [
    "!gen3 pfb show -i $pfb_data schema | jq # show the schema of the PFB file"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29",
   "metadata": {
    "id": "28"
   },
   "source": [
    "Now we've gone all the way from a dump of data contribution files, to a simple structured data model, to a serialized PFB, and back to usable files!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30",
   "metadata": {
    "id": "29"
   },
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "provenance": [],
   "toc_visible": true
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}