Spaces:
Runtime error
Runtime error
File size: 6,986 Bytes
c567880 cc69c66 c567880 68d7e91 c567880 cc69c66 c567880 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import sqlite3
def convert_type(type):
"""
Returns SQL type for given AI generated type
This function takes AI generated type and returns SQL type.
For simplified Data Dictionary enums are converted to text data type, and
arrays are converted in text arrays
Parameters:
type (str): AI generated type
Returns:
sql_type (str): SQL type
"""
sql_match = {
"string": "TEXT",
"integer": "INTEGER",
"number": "REAL",
"boolean": "BOOLEAN",
"array": "TEXT[]",
"enum": "TEXT",
}
sql_type = sql_match.get(type, "TEXT")
return sql_type
def get_pk_field(node):
"""
Returns primary key field for given AI generated node
This function takes AI generated node dictionary and returns primary key field.
Parameters:
node (dict): AI generated node dictionary
Returns:
pk_field (str): Primary key field
"""
# Look for a typical PK pattern: <table>.id
for prop in node["properties"]:
if prop["name"] == f"{node['name']}.id":
return prop["name"]
# Fallback
return None
def get_all_columns(node):
"""
Returns all columns for given AI generated node
This function takes AI generated node dictionary and returns all columns.
Parameters:
node (dict): AI generated node dictionary
Returns:
columns (list): List of column names
"""
return [prop["name"] for prop in node["properties"]]
def as_sql_col(prop_name):
"""
Returns property name as a sql column name with "." replaced with "__"
This function takes AI generated DD node property name and replaces "." with "__".
Dot in the field name may cause issues during the SQL table creation.
Parameters:
prop_name (str): property name
Returns:
col_name (str): Column name with "." replaced with "__"
"""
return prop_name.replace(".", "__")
def get_foreign_table_and_field(prop_name, node_name):
"""
Returns foreign table and field for given property name and node_name
This function takes AI generated DD node name and property name and returns foreign table and field.
Parameters:
prop_name (str): property name
node_name (str): node name
Returns:
foreign_table (str): Foreign table name
foreign_field (str): Foreign field name
"""
# Looks for pattern: e.g. project.id when not in 'project'
if prop_name.endswith(".id") and not prop_name.startswith(node_name + "."):
parent = prop_name.split(".")[0]
return parent, prop_name
return None, None
def transform_dd(dd):
"""
Returns transformed DD
This function takes AI generated DD and ensures all required fields are
present in properties and properties are dictionaries.
Parameters:
dd (dict): AI generated DD
Returns:
dd (dict): Transformed DD
"""
for node in dd.get("nodes", []):
props = node.get("properties", [])
if props and all(isinstance(x, dict) for x in props):
prop_names = {p["name"] for p in props}
elif props and all(isinstance(x, str) for x in props):
prop_names = set(props)
# Upgrade to list of dicts
props = [
{"name": prop, "description": "", "type": "string"} for prop in props
]
else:
props = []
prop_names = set()
# Ensure each required field is present in properties
for req in node.get("required", []):
if req not in prop_names:
props.append({"name": req, "description": "", "type": "string"})
prop_names.add(req)
node["properties"] = props
return dd
def generate_create_table(node, table_lookup):
"""
Returns SQL for the given AI generated node
This function takes AI generated node dictionary and returns SQL for the node.
Parameters:
node (dict): AI generated node dictionary
table_lookup (dict): Dictionary of tables and their columns
Returns:
sql (str): SQL for the node
"""
col_lines = []
fk_constraints = []
pk_fields = []
pk_field = get_pk_field(node)
required = node.get("required", [])
for prop in node["properties"]:
col = prop["name"]
coltype = convert_type(prop["type"])
sql_col = as_sql_col(col)
line = f' "{sql_col}" {coltype}'
if pk_field and col == pk_field:
pk_fields.append(sql_col)
if col in required or (pk_field and col == pk_field):
line += " NOT NULL"
col_lines.append(line)
# Foreign Keys
parent, parent_field = get_foreign_table_and_field(col, node["name"])
if parent:
ref_col = as_sql_col(parent_field)
parent_cols = table_lookup.get(parent, {})
if parent_field in parent_cols:
fk_constraints.append(
f' FOREIGN KEY ("{sql_col}") REFERENCES "{parent}"("{ref_col}")'
)
else:
fk_constraints.append(
f" -- WARNING: {parent} does not have field {parent_field}"
)
# Primary Keys
constraints = []
if pk_fields:
constraint_sql = ", ".join(f'"{c}"' for c in pk_fields)
constraints.append(f" PRIMARY KEY ({constraint_sql})")
lines = col_lines + constraints + fk_constraints
return f'CREATE TABLE "{node["name"]}" (\n' + ",\n".join(lines) + "\n);"
def validate_sql(sql, node_name):
"""
Returns validation result for the given SQL
This function takes SQL and node name and returns validation result.
Parameters:
sql (str): SQL
node_name (str): Node name
Returns:
validation_result (str): Validation result
"""
conn = sqlite3.connect(":memory:")
try:
conn.execute(sql)
validation_result = f'Valid SQL for table "{node_name}"\n'
except sqlite3.Error as e:
validation_result = f'Invalid SQL for table "{node_name}":\n{e}\n'
finally:
conn.close()
return validation_result
def dd_to_sql(dd):
"""
Returns SQL for the given AI generated DD
This function takes AI generated DD and returns SQL for the DD.
Parameters:
dd (dict): AI generated DD
Returns:
sql (str): SQL
validation (str): Validation result
"""
dd = transform_dd(dd)
# Build a lookup for table columns in all nodes
table_lookup = {}
for node in dd["nodes"]:
table_lookup[node["name"]] = get_all_columns(node)
# pprint.pprint(table_lookup)
# Generate SQL
combined_sql = ""
validation = "Validation notes:\n"
for node in dd["nodes"]:
sql = generate_create_table(node, table_lookup) + "\n\n"
validation = validation + validate_sql(sql, node["name"])
combined_sql = combined_sql + sql
return combined_sql, validation
|