Spaces:
Sleeping
Sleeping
File size: 17,481 Bytes
0b31237 eb7a7b2 0b31237 5974cda 8ef467a 5974cda aa4f11e 5974cda 0b31237 b758d7d 0b31237 f93f173 0b31237 557d5ce 0b31237 4d2fe3c 0b31237 4d2fe3c c6a0fb1 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4d2fe3c 0b31237 4cba529 0b31237 4cba529 0b31237 4cba529 0b31237 4cba529 0b31237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
#!/usr/bin/env python3
# various utility functions employed by the pipeline
import json
import re
import time
from functools import reduce, wraps
import numpy as np
import pandas as pd
import spacy
import torch
from guidance.models import Transformers
from guidance import gen as guidance_gen
from huggingface_hub import HfFolder, hf_hub_download
from datasets import load_dataset
from transformers import AutoTokenizer, BertTokenizer, AutoModelForCausalLM, BertForSequenceClassification
from methods import gdc_api_calls
def load_llama_llm(AUTH_TOKEN):
# hugging face model
# https://huggingface.co/blog/llama32
model_id = "meta-llama/Llama-3.2-3B-Instruct"
tok = AutoTokenizer.from_pretrained(
model_id, trust_remote_code=True,
token=AUTH_TOKEN
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
trust_remote_code=True,
# device_map="auto",
token=AUTH_TOKEN
)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")
model = model.eval()
return model, tok
def load_gdc_genes_mutations_hf(AUTH_TOKEN):
dataset_id = 'uc-ctds/GDC-QAG-genes-mutations'
filename = 'gdc_genes_mutations.json'
json_path = hf_hub_download(
repo_id=dataset_id,
filename=filename,
repo_type="dataset",
token=AUTH_TOKEN
)
# json_path = load_dataset(dataset_id, token=AUTH_TOKEN)
with open(json_path, 'r') as f:
gdc_genes_mutations = json.load(f)
return gdc_genes_mutations
def load_intent_model_hf(AUTH_TOKEN):
model_id = 'uc-ctds/query_intent'
tok = AutoTokenizer.from_pretrained(
model_id, trust_remote_code=True,
token=AUTH_TOKEN
)
model = BertForSequenceClassification.from_pretrained(
model_id, token=AUTH_TOKEN)
return model, tok
def construct_modified_query_base_llm(query):
prompt_template = "Only use results from the genomic data commons in your response and provide frequencies as a percentage. Only report the final response."
modified_query = query + prompt_template
return modified_query
def construct_modified_query(query, helper_output):
# pass the api results as a prompt to the query
prompt_template = (
" Only report the final response. Ignore all prior knowledge. You must only respond with the following percentage frequencies in your response, no other response is allowed: \n"
+ helper_output
+ "\n"
)
modified_query = query + prompt_template
return modified_query
def get_total_case_counts(ssm_counts_by_project):
for project in ssm_counts_by_project.keys():
total_case_count = gdc_api_calls.get_available_ssm_data_for_project(project)
ssm_counts_by_project[project]["total_case_counts"] = total_case_count
return ssm_counts_by_project
def calculate_ssm_frequency(ssm_statistics, cancer_entities, project_mappings):
ssm_frequency = {}
for project in ssm_statistics.keys():
freq = (
ssm_statistics[project]["ssm_counts"]
/ ssm_statistics[project]["total_case_counts"]
)
ssm_frequency[project] = {"frequency": round(freq * 100, 2)}
# if there are no ssms, set to 0 counts
for c in cancer_entities:
if c not in ssm_frequency:
ssm_frequency[c] = {'frequency': 0.0}
return ssm_frequency
def calculate_joint_ssm_frequency_v2(ssm_statistics, mutation_list, cancer_entities):
# stores the result for all cancers
joint_ssm_frequency = {}
# initialize joint_freq by cancer entities
joint_ssm_frequency_for_cancer = {}
for c in cancer_entities:
joint_ssm_frequency_for_cancer[c] = {}
joint_ssm_frequency_for_cancer[c] = {"joint_frequency": 0.0}
projects_with_mutation = [
set(ssm_statistics[mutation].keys()) for mutation in mutation_list
]
overlapping_projects_with_mutation = list(
reduce(lambda x, y: x & y, projects_with_mutation)
)
for project in overlapping_projects_with_mutation:
cases_with_mutation = [
set(ssm_statistics[mutation][project]["case_id_list"])
for mutation in mutation_list
]
shared_cases = list(reduce(lambda x, y: x & y, cases_with_mutation))
# print('shared cases, len shared cases {} {}'.format(shared_cases, len(shared_cases)))
if shared_cases:
if project not in joint_ssm_frequency:
joint_ssm_frequency[project] = {}
total_case_counts = gdc_api_calls.get_available_ssm_data_for_project(
project
)
joint_frequency = len(shared_cases) / total_case_counts
# print('shared_cases {}'.format(shared_cases))
# print('joint freq {}'.format(joint_frequency))
joint_ssm_frequency[project]["joint_frequency"] = round(
joint_frequency * 100, 2
)
# filter for specific cancer type and return
for c in cancer_entities:
if c in joint_ssm_frequency:
joint_ssm_frequency_for_cancer[c]["joint_frequency"] = joint_ssm_frequency[
c
]["joint_frequency"]
return joint_ssm_frequency_for_cancer
def flatten_ssm_results_to_text(result, result_type):
result_text = []
if result_type == "joint_frequency":
for k, v in result.items():
if k == "joint_frequency":
for k2, v2 in v.items():
result_text.append(
"joint frequency in {} is {}%".format(k2, v2["joint_frequency"])
)
else:
for k, v in result.items():
if k != "joint_frequency":
for k2, v2 in v.items():
result_text.append(
"The frequency of {} in {} is {}%".format(
k, k2, v2["frequency"]
)
)
return result_text
def get_ssm_frequency(
gene_entities, mutation_entities, cancer_entities, project_mappings
):
ssm_statistics = {}
mutation_list = []
result = {}
# to match the genes with mutations
if len(mutation_entities) > len(gene_entities):
gene_entities = gene_entities * len(mutation_entities)
# print('gene entities {}'.format(gene_entities))
for gene, mutation in zip(gene_entities, mutation_entities):
mutation_name = "_".join([gene, mutation])
# print('computing frequency of {}'.format(mutation_name))
mutation_list.append(mutation_name)
ssm_id = gdc_api_calls.get_ssm_id(gene, mutation)
ssm_counts_by_project = gdc_api_calls.get_ssm_counts(ssm_id, cancer_entities)
ssm_statistics[mutation_name] = get_total_case_counts(ssm_counts_by_project)
# test code for generalizability to multiple cancer entities
# full_result format is {'project1': {'frequency': }, 'project2': {'frequency':}, 'projectn': {'frequency':}}
result[mutation_name] = calculate_ssm_frequency(
ssm_statistics[mutation_name], cancer_entities, project_mappings
)
# result[mutation_name] = {
# k: v for k, v in full_result.items()
#}
# result format:
"""
{
'gene_mutation': # e.g. JAK2_V617F
{
'project1': {'frequency': },
'project2': {'frequency':},
'projectn': {'frequency':}
}
}
'project1': {'frequency': }, 'project2': {'frequency':}
"""
# only supporting for two mutations atm
if len(mutation_list) > 1:
# print('computing joint frequency')
result["joint_frequency"] = calculate_joint_ssm_frequency_v2(
ssm_statistics, mutation_list=mutation_list, cancer_entities=cancer_entities
)
result_text = flatten_ssm_results_to_text(result, result_type="joint_frequency")
else:
result["joint_frequency"] = 0
result_text = flatten_ssm_results_to_text(
result, result_type="single_frequency"
)
# print('result_text {}'.format(result_text))
return result_text, cancer_entities
def decompose_mutation_and_cnv(query, match_term, gdc_genes_mutations):
decompose_result = {}
genes = [g for g in query.split(" ") if g in gdc_genes_mutations.keys()]
# query must have cnv first, followed by mutation
cnv_gene_name, mut_gene_name = genes[0], genes[1]
# print('cnv_gene_name, mut_gene_name {} {}'.format(
# cnv_gene_name, mut_gene_name))
decompose_result["cnv_and_ssm"] = True
decompose_result["cnv_gene"] = cnv_gene_name
decompose_result["mut_gene"] = mut_gene_name
decompose_result["cnv_change_type"] = match_term
return decompose_result
def get_freq_of_cnv_and_ssms(
query, cancer_entities, gene_entities, gdc_genes_mutations
):
lc_query = query.lower()
match_term = ""
cnv_terms = [
"amplification",
"deletion",
"loss",
"gain",
"homozygous deletion",
"heterozygous deletion",
]
for term in cnv_terms:
if term in lc_query:
match_term = term
# print('match_term {}'.format(match_term))
if match_term:
decompose_result = decompose_mutation_and_cnv(
query, match_term, gdc_genes_mutations
)
# print('decompose result {}'.format(decompose_result))
result, cancer_entities = gdc_api_calls.run_cnv_ssm_api(
decompose_result, cancer_entities, query
)
# print('result {}'.format(result))
else:
# no specific match terms, return freq of cnvs + ssm
result, cancer_entities = gdc_api_calls.get_top_cases_counts_by_gene(
gene_entities, cancer_entities
)
return result, cancer_entities
def return_initial_cancer_entities(query, model):
nlp = spacy.load(model)
doc = nlp(query)
result = doc.ents
initial_cancer_entities = [e.text for e in result if e.label_ == "DISEASE"]
return initial_cancer_entities
def infer_gene_entities_from_query(query, gdc_genes_mutations):
entities = []
# gene recognition with simple dict-based method
for g in gdc_genes_mutations.keys():
if (g in query) and (g in query.split(" ")):
entities.append(g)
return entities
def check_if_project_id_in_query(project_list, query):
# check if mention of project keys
# e.g. TCGA-BRCA in query
final_entities = [
potential_ce
for potential_ce in query.split(" ")
if potential_ce in project_list
]
return final_entities
def proj_id_and_partial_match(query, project_mappings, initial_cancer_entities):
final_entities = []
if initial_cancer_entities:
# print('checking for full match between initial cancer entities and GDC project descriptions')
# check for match with project_mapping values
# e.g. match "ovarian serous cystadenocarcinoma" to TCGA-OV project
for ic in initial_cancer_entities:
for k, v in project_mappings.items():
for c in v:
if ic in c.lower():
# print('found!!! {} {}'.format(ic, c.lower()))
final_entities.append(k)
else:
# print('no initial cancer entities, check for full match between query terms and GDC project descriptions')
for term in query.lower().split(" "):
for k, v in project_mappings.items():
for c in v:
if term in c.lower():
# print('found!!! {} {}'.format(ic, c.lower()))
final_entities.append(k)
return list(set(final_entities))
def postprocess_cancer_entities(project_mappings, initial_cancer_entities, query):
# print('initial cancer entities {}'.format(initial_cancer_entities))
project_list = project_mappings.keys()
# print('check if GDC project-id mentioned in query')
final_entities = check_if_project_id_in_query(project_list, query)
if final_entities:
return final_entities
else:
if initial_cancer_entities:
# first query GDC projects endpt
# print('test 1 (w/ initial entities): querying GDC projects endpt for project_id')
gdc_project_match = gdc_api_calls.map_cancer_entities_to_project(
initial_cancer_entities, project_mappings
)
# print('mapped projects to ids {}'.format(gdc_project_match))
if gdc_project_match.values():
final_entities = list(gdc_project_match.values())
if not final_entities:
# print('test 2 (w/ initial entities): no result from GDC projects endpt, check for matches '
# 'between query terms and gdc project_mappings')
final_entities = proj_id_and_partial_match(
query, project_mappings, initial_cancer_entities
)
else:
# no initial_cancer_entities
# check project_mappings keys/values for matches with query terms
# print('test 3 (w/o initial entities): no result from GDC projects endpt, check for matches '
# 'between query terms and gdc project_mappings')
final_entities = proj_id_and_partial_match(
query, project_mappings, initial_cancer_entities
)
return final_entities
def infer_mutation_entities(gene_entities, query, gdc_genes_mutations):
mutation_entities = []
for g in gene_entities:
for m in gdc_genes_mutations[g]:
if m in query:
mutation_entities.append(m)
return mutation_entities
def postprocess_response(row):
value_changed = "no"
pattern = r".*?(\d*\.\d*)%.*?"
delta_final = np.nan
delta_prefinal = np.nan
generated_stat_final = np.nan
try:
helper_output = row["helper_output"]
except Exception as e:
# print('unable to generate helper output, returning nan')
return pd.Series(["np.nan"] * 8)
pre_final_response = row["pre_final_llama_with_helper_output"]
llama_base_output = row["llama_base_output"]
try:
llama_base_stat = float(re.search(pattern, llama_base_output).group(1))
except Exception as e:
# print('unable to extract llama base stat {}'.format(str(e)))
llama_base_stat = np.nan
try:
generated_stat_prefinal = float(re.search(pattern, pre_final_response).group(1))
except Exception as e:
# print('unable to extract generated stat {}'.format(str(e)))
generated_stat_prefinal = np.nan
try:
ground_truth_stat = float(re.search(pattern, helper_output).group(1))
except Exception as e:
# print('unable to extract ground truth stat {}'.format(str(e)))
ground_truth_stat = np.nan
try:
delta_llama = llama_base_stat - ground_truth_stat
except Exception as e:
# print('unable to calculate delta_llama {}'.format(str(e)))
delta_llama = np.nan
if not np.isnan(generated_stat_prefinal) and not np.isnan(ground_truth_stat):
delta_prefinal = generated_stat_prefinal - ground_truth_stat
if delta_prefinal != 0.0:
final_response = "The final answer is: {}%".format(ground_truth_stat)
value_changed = "yes"
else:
final_response = pre_final_response
generated_stat_final = float(re.search(pattern, final_response).group(1))
delta_final = generated_stat_final - ground_truth_stat
else:
final_response = "unable to postprocess, check generated or truth stat"
value_changed = "na"
"""
print('check if all values are populated:\n')
print('delta_llama {}'.format(delta_llama))
print('value_changed {}'.format(value_changed))
print('ground_truth_stat {}'.format(ground_truth_stat))
print('generated_stat_prefinal {}'.format(generated_stat_prefinal))
print('delta_prefinal {}'.format(delta_prefinal))
print('generated_stat_final {}'.format(generated_stat_final))
print('delta_final {}'.format(delta_final))
print('final_response {}'.format(final_response))
"""
return pd.Series(
[
llama_base_stat,
delta_llama,
value_changed,
ground_truth_stat,
generated_stat_prefinal,
delta_prefinal,
generated_stat_final,
delta_final,
final_response,
]
)
def set_hf_token(token_path):
# hugging face token
with open(token_path, "r") as hf_token_file:
HF_TOKEN = hf_token_file.read().strip()
HfFolder.save_token(HF_TOKEN)
def get_final_columns():
# colnames for final output CSV
final_columns = [
"questions",
"gene_entities",
"mutation_entities",
"cancer_entities",
"intent",
"llama_base_output",
"llama_base_stat",
"helper_output",
"ground_truth_stat",
"modified_prompt",
"final_response",
"delta_llama"
]
return final_columns
def timeit(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
start = time.perf_counter()
result = fn(*args, **kwargs)
end = time.perf_counter()
print(f"{fn.__name__} took {end - start:.4f} seconds")
return result
return wrapper |