File size: 8,707 Bytes
262ffbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Imports for Transcript Loader
import os
import webvtt
import re
from datetime import datetime
from llama_index import Document


# Imports for Document Embedder
import gc
import re

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pinecone.grpc import PineconeGRPC
from pinecone import ServerlessSpec

from llama_index.vector_stores import PineconeVectorStore
from llama_index.node_parser import SemanticSplitterNodeParser
from llama_index.ingestion import IngestionPipeline





class VTTTranscriptLoader:
    """
    vtt file ingestion and cleaning. This was done because vtt files
    are not recognized by llamaindex. The output should mirror that of
    any document loader from llamaindex or langchain.
    """

    def __init__(self, file_path):
        self.fp = file_path
        self.data = None

    def open_vtt(self, file_path, plaintext=True):
        """Read VTT file."""
        if plaintext:
            with open(file_path, "r") as f:
                data = f.readlines()
        else:
            data = webvtt.read(file_path)
        return data

    def extract_speaker_name(self, text):
        """Extracts the speaker name from a VTT caption."""
        match = re.search(r"<v (.*?)>", text)
        if match:
            return match.group(1)
        else:
            return None

    def extract_speaker_words(self, captions):
        """Extracts the speaker text from a VTT caption."""
        return [caption.text for caption in captions]

    def merge_speaker_words(self, words, speakers, split=True):
        """Joins speaker names with their words."""
        # Extract speaker names
        speaker_list = [self.extract_speaker_name(line) for line in speakers if self.extract_speaker_name(line)]
        # Extract words
        words_list = self.extract_speaker_words(words)
        # Combine speaker names and words
        combined_list = list(zip(speaker_list, words_list))
        # Return the combined list as a single string if split is False
        if not split:
            combined_list = '\n'.join([f"{name}: '{text}'" for name, text in combined_list])
        return combined_list, speaker_list

    def get_metadata(self, speaker_list, file_path):
        """Generates metadata for the transcript."""
        # Meeting length
        time_format = "%H:%M:%S.%f"
        sess = self.open_vtt(file_path, plaintext=False)

        dt1 = datetime.strptime(sess[0].start, time_format)
        dt2 = datetime.strptime(sess[-1].end, time_format)

        minutes = (dt2 - dt1).seconds / 60
        # Meeting date
        match = re.search(r"\d{4}[-_]\d{2}[-_]\d{2}", file_path)
        if match:
            date_str = match.group().replace('_', '-')
            date_obj = datetime.strptime(date_str, "%Y-%m-%d").date()
        else:
            date_obj = None

        # Pull dictionary here
        output = {
            'title': file_path,
            'duration': minutes,
            'meeting_date': date_obj.strftime("%Y-%m-%d"),
            'speakers': list(set(speaker_list)),
        }

        return output

    def manual_document(self, output, metadata):
        """Create document manually"""
        document = Document(text=output)
        document.metadata = metadata
        return document

    def process_file(self, file_path):
        """Processes a single VTT file and returns the combined speaker names and words."""
        # Get words as webvtt captions
        words = self.open_vtt(file_path, plaintext=False)
        # Get speaker lines as plaintext
        speaker = self.open_vtt(file_path, plaintext=True)
        # Combine speaker names and words
        output, speaker_list = self.merge_speaker_words(words, speaker, split=False)
        # Get session data as dictionary
        metadata = self.get_metadata(speaker_list, file_path)

        return self.manual_document(output, metadata)

    def load(self):
        """Processes all VTT files in the directory or the single file and returns a list of results."""
        results = []
        if os.path.isdir(self.fp):
            for root, _, files in os.walk(self.fp):
                for file in files:
                    if file.endswith('.vtt'):
                        file_path = os.path.join(root, file)
                        transcript = self.process_file(file_path)
                        results.append(transcript)
        else:
            transcript = self.process_file(self.fp)
            results.append(transcript)
        return results


class DocumentEmbedder:
    """
    Takes a document and embeds it directly into a pinecone data store.
    Process retrieves, cleans, embeds, and sends the documents to vector
    store.

    Currently supports hugginface embeddings only. Gotta keep things cheap.
    """

    def __init__(self, api_keys, files, embedding, index_name):
        # api keys
        self.pinecone_api_key = api_keys['pinecone']
        self.openai_api_key = api_keys['openai']
        self.huggingface_api_key = api_keys['huggingface']
        # pinecone
        self.embedding = embedding
        self.vector_db = index_name
        # basic items
        self.files = files
        self.interactive = interactive

    
    def clean_text(self, content: str) -> str:
        """
        Remove unwanted characters and patterns in text input.
        :param content: Text input.
        :return: Cleaned version of original text input.
        """

        # Fix hyphenated words broken by newline
        content = re.sub(r'(\w+)-\n(\w+)', r'\1\2', content)

        # Remove specific unwanted patterns and characters
        unwanted_patterns = [
            "\\n", "  β€”", "β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”", "β€”β€”β€”β€”β€”β€”β€”β€”β€”", "β€”β€”β€”β€”β€”",
            r'\\u[\dA-Fa-f]{4}', r'\uf075', r'\uf0b7'
        ]
        for pattern in unwanted_patterns:
            content = re.sub(pattern, "", content)

        # Fix improperly spaced hyphenated words and normalize whitespace
        content = re.sub(r'(\w)\s*-\s*(\w)', r'\1-\2', content)
        content = re.sub(r'\s+', ' ', content)

        return content

    
    def create_embedder(self):
        """Get the right embedding model"""
        
        embedding = HuggingFaceEmbedding(model_name=self.embedding)
        return embedding


    def pinecone_pipeline(self, embedding):
        """Initialize pinecone connection and vectorstore"""

        # connect
        pc = PineconeGRPC(api_key=self.pinecone_api_key)

        # Create your index if index does not exist
        indexes = [i.name for i in pc.list_indexes()]
        index_exists = any([self.vector_db in i for i in indexes])

        if index_exists:
            print("Index already exists")
        else:
            print("Creating index")
            pc.create_index(
                self.vector_db,
                dimension=768,
                metric="cosine",
                spec=ServerlessSpec(cloud="aws", region="us-east-1"),
        )

        # Initialize your index
        pinecone_index = pc.Index(self.vector_db)

        # Initialize VectorStore
        vector_store = PineconeVectorStore(pinecone_index=pinecone_index)

        # create pipeline (abstracts away the need to adaptively process and batch)
        pipeline = IngestionPipeline(
            transformations=[
                # creating appropriate chunks and cutoffs (this needs to be worked on).
                SemanticSplitterNodeParser(
                    buffer_size=10, # 1 = each sentence is a node
                    breakpoint_percentile_threshold=95,
                    embed_model=embedding,
                    ),
                embedding,
                ],
                vector_store=vector_store
            )

        return pipeline

    
    def embed(self):
        """stringing process above to embed and upsert directly to pinecone"""

        # read_file
        print("reading files")
        results = self.files

        # Call clean function
        print("cleaning files")
        for d in range(len(results)):
            results[d].text = self.clean_text(results[d].text)

        # set up embedder
        print("retrieving embedder")
        embedder = self.create_embedder()

        # set up pinecone pipeline
        print("initializing pinecone db")
        pipeline = self.pinecone_pipeline(embedder)

        # run pinecone in batches (of 1) for memory preservation.
        print("reading into pinecone db")
        batchsize = 1
        for i in range(0, len(results), batchsize):
            gc.collect()
            batch = pipeline.run(documents=results[i:i+batchsize])
            print("completed batch %s" % ((i+batchsize)/batchsize))