Spaces:
Running
Running
File size: 2,429 Bytes
33216f6 e29651b 33216f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import os
import torch
from pyannote.audio import Pipeline
def extract_files(files):
filepaths = [file.name for file in files]
return filepaths
class Diarizer:
def __init__(self, conf):
self.conf = conf
self.pipeline = self.pyannote_pipeline()
def pyannote_pipeline(self):
pipeline = Pipeline.from_pretrained(
self.conf["model"]["diarizer"],
use_auth_token=os.environ["HUGGINGFACE_TOKEN"]
)
return pipeline
def get_pipeline(self):
return self.pipeline
def add_device(self, pipeline):
"""Offloaded to allow for best timing when working with GPUs"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline.to(device)
return pipeline
def diarize_audio(self, temp_file, num_speakers):
pipeline = self.add_device(self.pipeline)
diarization = pipeline(temp_file, num_speakers=num_speakers)
# os.remove(temp_file) # Uncomment if you want to remove the temp file after processing
return str(diarization)
def extract_seconds(self, timestamp):
h, m, s = map(float, timestamp.split(':'))
return 3600 * h + 60 * m + s
def generate_labels_from_diarization(self, diarized_output):
labels_path = 'labels.txt'
lines = diarized_output.strip().split('\n')
plaintext = ""
for line in lines:
try:
parts = line.strip()[1:-1].split(' --> ')
if len(parts) == 2:
label = line.split()[-1].strip()
start_seconds = self.extract_seconds(parts[0].strip())
end_seconds = self.extract_seconds(parts[1].split(']')[0].strip())
plaintext += f"{start_seconds}\t{end_seconds}\t{label}\n"
else:
raise ValueError("Unexpected format in diarized output")
except Exception as e:
print(f"Error processing line: '{line.strip()}'. Error: {e}")
with open(labels_path, "w") as file:
file.write(plaintext)
return labels_path
def run(self, temp_file, num_speakers):
diarization_result = self.diarize_audio(temp_file, num_speakers)
label_file = self.generate_labels_from_diarization(diarization_result)
return diarization_result, label_file
|