File size: 12,190 Bytes
bb159c0
58384c0
6573f9c
95d0aed
7410b62
 
 
108c4dc
44247fb
c33eba0
bb159c0
0f77540
95d0aed
1a92b4b
6573f9c
bb159c0
 
796067e
1a92b4b
796067e
 
0f77540
796067e
 
bb159c0
 
 
 
9d661c1
bb159c0
 
 
 
 
 
 
1a92b4b
 
 
 
 
 
6573f9c
 
0f77540
 
 
108c4dc
da5a6b8
 
7410b62
da5a6b8
 
7410b62
fc5c393
7410b62
 
108c4dc
da5a6b8
7410b62
 
108c4dc
 
 
 
 
 
 
 
 
 
 
 
c33eba0
fc5c393
 
 
 
 
c33eba0
44247fb
 
 
 
 
 
 
 
fc5c393
 
c33eba0
95d0aed
 
796067e
bb159c0
 
95d0aed
9d661c1
 
f3a6c77
0f77540
 
 
 
da5a6b8
0f77540
da5a6b8
 
 
 
 
 
1a92b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6573f9c
1a92b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6573f9c
1a92b4b
 
 
 
 
 
 
 
 
 
6573f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a92b4b
 
 
 
 
 
 
 
 
 
 
 
9d661c1
c33eba0
9d661c1
 
7410b62
 
da5a6b8
7410b62
 
 
108c4dc
9d661c1
108c4dc
fc5c393
108c4dc
 
 
 
 
 
9d661c1
fc5c393
c33eba0
 
 
 
 
 
 
 
 
 
9d661c1
f3a6c77
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
from langchain_core.messages import HumanMessage, AIMessage
from llm import DeepSeekLLM, OpenRouterLLM, TongYiLLM
from config import settings
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import cv2
from diffusers import StableDiffusionXLPipeline
import torch


deep_seek_llm = DeepSeekLLM(api_key=settings.deep_seek_api_key)
open_router_llm = OpenRouterLLM(api_key=settings.open_router_api_key)
tongyi_llm = TongYiLLM(api_key=settings.tongyi_api_key)


def init_chat():
    return deep_seek_llm.get_chat_engine()


def predict(message, history, chat):
    if chat is None:
        chat = init_chat()
    history_messages = []
    for human, assistant in history:
        history_messages.append(HumanMessage(content=human))
        history_messages.append(AIMessage(content=assistant))
    history_messages.append(HumanMessage(content=message.text))

    response_message = ''
    for chunk in chat.stream(history_messages):
        response_message = response_message + chunk.content
        yield response_message


def update_chat(_provider: str, _chat, _model: str, _temperature: float, _max_tokens: int):
    print('?????', _provider, _chat, _model, _temperature, _max_tokens)
    if _provider == 'DeepSeek':
        _chat = deep_seek_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
    if _provider == 'OpenRouter':
        _chat = open_router_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
    if _provider == 'Tongyi':
        _chat = tongyi_llm.get_chat_engine(model=_model, temperature=_temperature, max_tokens=_max_tokens)
    return _chat


def object_remove(_image, refined):
    mask = _image['layers'][0]
    mask = mask.convert('L')
    _input = {
        'img': _image['background'].convert('RGB'),
        'mask': mask,
    }
    inpainting = pipeline(Tasks.image_inpainting, model='damo/cv_fft_inpainting_lama', refined=refined)
    result = inpainting(_input)
    vis_img = result[OutputKeys.OUTPUT_IMG]
    vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
    return vis_img, mask


def bg_remove(_image, _type):
    input_image = _image['background'].convert('RGB')
    if _type == '人像':
        matting = pipeline(Tasks.portrait_matting, model='damo/cv_unet_image-matting')
    else:
        matting = pipeline(Tasks.universal_matting, model='damo/cv_unet_universal-matting')
    result = matting(input_image)
    vis_img = result[OutputKeys.OUTPUT_IMG]
    vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGRA2RGBA)
    return vis_img


def text_to_image(_image, _prompt):
    t2i_pipeline = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float16,
        variant="fp16",
        use_safetensors=True,
    ).to("cuda")
    result = t2i_pipeline(
        prompt=_prompt,
        negative_prompt='ugly',
        num_inference_steps=22,
        width=1024,
        height=1024,
        guidance_scale=7,
    ).images[0]
    return result


with gr.Blocks() as app:
    with gr.Tab('聊天'):
        chat_engine = gr.State(value=None)
        with gr.Row():
            with gr.Column(scale=2, min_width=600):
                chatbot = gr.ChatInterface(
                    predict,
                    multimodal=True,
                    chatbot=gr.Chatbot(elem_id="chatbot", height=600, show_share_button=False),
                    textbox=gr.MultimodalTextbox(lines=1),
                    additional_inputs=[chat_engine]
                )
            with gr.Column(scale=1, min_width=300):
                with gr.Accordion('参数设置', open=True):
                    with gr.Column():
                        provider = gr.Dropdown(
                            label='模型厂商',
                            choices=['DeepSeek', 'OpenRouter', 'Tongyi'],
                            value='DeepSeek',
                            info='不同模型厂商参数,效果和价格略有不同,请先设置好对应模型厂商的 API Key。',
                        )

                    @gr.render(inputs=provider)
                    def show_model_config_panel(_provider):
                        if _provider == 'DeepSeek':
                            with gr.Column():
                                model = gr.Dropdown(
                                    label='模型',
                                    choices=deep_seek_llm.support_models,
                                    value=deep_seek_llm.default_model
                                )
                                temperature = gr.Slider(
                                    minimum=0.0,
                                    maximum=1.0,
                                    step=0.1,
                                    value=deep_seek_llm.default_temperature,
                                    label="Temperature",
                                    key="temperature",
                                )
                                max_tokens = gr.Slider(
                                    minimum=1024,
                                    maximum=1024 * 20,
                                    step=128,
                                    value=deep_seek_llm.default_max_tokens,
                                    label="Max Tokens",
                                    key="max_tokens",
                                )
                            model.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            temperature.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            max_tokens.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                        if _provider == 'OpenRouter':
                            with gr.Column():
                                model = gr.Dropdown(
                                    label='模型',
                                    choices=open_router_llm.support_models,
                                    value=open_router_llm.default_model
                                )
                                temperature = gr.Slider(
                                    minimum=0.0,
                                    maximum=1.0,
                                    step=0.1,
                                    value=open_router_llm.default_temperature,
                                    label="Temperature",
                                    key="temperature",
                                )
                                max_tokens = gr.Slider(
                                    minimum=1024,
                                    maximum=1024 * 20,
                                    step=128,
                                    value=open_router_llm.default_max_tokens,
                                    label="Max Tokens",
                                    key="max_tokens",
                                )
                            model.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            temperature.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            max_tokens.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                        if _provider == 'Tongyi':
                            with gr.Column():
                                model = gr.Dropdown(
                                    label='模型',
                                    choices=tongyi_llm.support_models,
                                    value=tongyi_llm.default_model
                                )
                                temperature = gr.Slider(
                                    minimum=0.0,
                                    maximum=1.0,
                                    step=0.1,
                                    value=tongyi_llm.default_temperature,
                                    label="Temperature",
                                    key="temperature",
                                )
                                max_tokens = gr.Slider(
                                    minimum=1000,
                                    maximum=2000,
                                    step=100,
                                    value=tongyi_llm.default_max_tokens,
                                    label="Max Tokens",
                                    key="max_tokens",
                                )
                            model.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            temperature.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )
                            max_tokens.change(
                                fn=update_chat,
                                inputs=[provider, chat_engine, model, temperature, max_tokens],
                                outputs=[chat_engine],
                            )

    with gr.Tab('图像编辑'):
        with gr.Row():
            with gr.Column(scale=2, min_width=600):
                image = gr.ImageMask(
                    type='pil',
                    brush=gr.Brush(colors=["rgba(255, 255, 255, 0.9)"]),
                )
                with gr.Row():
                    mask_preview = gr.Image(label='蒙板预览')
                    image_preview = gr.Image(label='图片预览')
            with gr.Column(scale=1, min_width=300):
                with gr.Accordion(label="物体移除"):
                    object_remove_refined = gr.Checkbox(label="Refined(GPU)", info="只支持 GPU, 开启将获得更好的效果")
                    object_remove_btn = gr.Button('物体移除', variant='primary')
                with gr.Accordion(label="背景移除"):
                    bg_remove_type = gr.Radio(["人像", "通用"], label="类型", value='人像')
                    bg_remove_btn = gr.Button('背景移除', variant='primary')
            object_remove_btn.click(fn=object_remove, inputs=[image, object_remove_refined], outputs=[image_preview, mask_preview])
            bg_remove_btn.click(fn=bg_remove, inputs=[image, bg_remove_type], outputs=[image_preview])

    with gr.Tab('画图(GPU)'):
        with gr.Row():
            with gr.Column(scale=2, min_width=600):
                image = gr.Image()

            with gr.Column(scale=1, min_width=300):
                with gr.Accordion(label="图像生成"):
                    prompt = gr.Textbox(label="提示语", value="", lines=3)
                    t2i_btn = gr.Button('画图', variant='primary')
            t2i_btn.click(fn=text_to_image, inputs=[prompt, image], outputs=[image])


app.launch(debug=settings.debug, show_api=False)