Spaces:
Sleeping
Sleeping
File size: 7,192 Bytes
f526a64 89521e9 f526a64 c77b8da f526a64 c77b8da f526a64 c77b8da f526a64 10d2191 f526a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from flask import Flask
from flask_cors import CORS, cross_origin
from flask import request
import os
import cv2
import json
from flask import request
# Khởi tạo Flask Server Backend
app = Flask(__name__)
# Apply Flask CORS
CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
app.config['UPLOAD_FOLDER'] = 'static'
# yolov6_model = my_yolov6.my_yolov6("weights/yolov6s.pt", 'cpu', 'data/coco.yaml', 640, True)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms, models
from torch.autograd import Variable
from torch.utils.data.sampler import SubsetRandomSampler
import warnings
warnings.filterwarnings('ignore')
from pytorch_grad_cam import GradCAM, EigenCAM, LayerCAM, XGradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image, \
deprocess_image, \
preprocess_image
from PIL import Image
import copy
# Load GoogleNet model
# os.makedirs('./model', exist_ok=True, mode=0o777)
# os.environ['TORCH_HOME'] = './models'
model = models.googlenet(pretrained=True)
model.fc= nn.Linear(1024, 4)
model.load_state_dict(torch.load('./model_transfer_batch_2_epoch50.pt', map_location=torch.device('cpu')))
data_transforms ={
"train_transforms": transforms.Compose([transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])]),
"valid_transforms": transforms.Compose([transforms.Resize(225),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])]),
"test_transforms": transforms.Compose([transforms.Resize(225),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
}
transform = transforms.Compose([transforms.Resize(225),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
use_cuda = torch.cuda.is_available()
classes = ['BrownSpot', 'Healthy', 'Hispa', 'LeafBlast']
def yolo_format(x, y, w, h, image_size):
x_center_norm = (x+w/2)/image_size[1]
y_center_norm = (y+h/2)/image_size[0]
w_norm = w/image_size[1]
h_norm = h/image_size[0]
return (x_center_norm, y_center_norm, w_norm, h_norm)
def predict_image(image_url):
img = np.array(Image.open(image_url))
img_cp = np.copy(img)
img_cp = cv2.resize(img_cp, (224, 224))
img_cp = np.float32(img_cp) / 255
input_tensor = preprocess_image(img_cp, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
input_tensor = torch.Tensor(input_tensor)
# input_tensor.cuda()
output = model(input_tensor)
# print(torch.max(output, 1))
_, preds_tensor = torch.max(output, 1)
# preds = np.squeeze(preds, preds_tensor.numpy()) if not use_cuda else np.squeeze(preds_tensor.cpu().numpy())
preds = np.squeeze(preds_tensor.cpu().numpy())
print(preds)
class_name = classes[preds]
if preds == 1:
grad_bounding_box = (0,0,0,0)
else:
img = np.array(Image.open(image_url))
img = cv2.resize(img, (224, 224))
img = np.float32(img) / 255
input_tensor = torch.Tensor(input_tensor)
# input_tensor.cuda()
input_tensor = preprocess_image(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
targets = [ClassifierOutputTarget(0)]
target_layers = [model.inception5b.branch4[1].conv]
with EigenCAM(model=model, target_layers=target_layers) as cam:
grayscale_cams = cam(input_tensor=input_tensor, targets=targets)
cam_image = show_cam_on_image(img, grayscale_cams[0, :], use_rgb=True)
cam = np.uint8(255*grayscale_cams[0, :])
img = np.uint8(255*img)
ret, thresh1 = cv2.threshold(cam, 120, 255, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)
img_otsu = cam < thresh1
img_bin = np.multiply(img_otsu, 1)
img_bin = np.array(img_bin, np.uint8)
contours, _ = cv2.findContours(img_bin,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cnt = contours[0]
x,y,w,h = cv2.boundingRect(cnt)
# grad_bounding_box = (x,y,x+w, y+h)
grad_bounding_box = yolo_format(x, y, w, h, (224, 224))
# print(grad_bounding_box)
return class_name, grad_bounding_box
def yolo2bbox(x, y, w, h, img_size=(224, 224)):
x = x * img_size[1]
y = y * img_size[0]
w = w * img_size[1]
h = h * img_size[0]
x1, y1 = x-w/2, y-h/2
x2, y2 = x+w/2, y+h/2
return int(x1), int(y1), int(x2), int(y2)
def bb_intersection_over_union(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
iou = interArea / float(boxAArea + boxBArea - interArea)
return iou
def read_annot_file(label_file):
with open(os.path.join(label_file), "r") as file1:
# Reading from a file
t = file1.read()
box = t[t.find(" ")+1:]
box = list(box.split(" "))
# list(map(float, box))
for i in range(len(box)):
box[i] = float(box[i])
return box
@app.route('/', methods=['POST'] )
@cross_origin(origin='*')
def predict_leaf():
image = request.files['file']
os.makedirs("./static", exist_ok=True, mode=0o777)
if image:
# Lưu file
path_to_save = os.path.join(app.config['UPLOAD_FOLDER'], image.filename)
# print("Save= ", path_to_save)
image.save(path_to_save)
predicted_class, grad_bounding_box = predict_image(path_to_save)
# print(predicted_class)
# print(grad_bounding_box)
result_dict = {'class': predicted_class, 'bounding_box': grad_bounding_box}
json_object = json.dumps(result_dict)
print(json_object)
return json_object
return 'Upload file to detect: '
# Start Backend
if __name__ == '__main__':
app.run(host='0.0.0.0', port='6868') |