File size: 5,410 Bytes
f526a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
from PIL import Image
import torch
from typing import Callable, List, Tuple, Optional
from sklearn.decomposition import NMF
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image


def dff(activations: np.ndarray, n_components: int = 5):
    """ Compute Deep Feature Factorization on a 2d Activations tensor.

    :param activations: A numpy array of shape batch x channels x height x width
    :param n_components: The number of components for the non negative matrix factorization
    :returns: A tuple of the concepts (a numpy array with shape channels x components),
              and the explanation heatmaps (a numpy arary with shape batch x height x width)
    """

    batch_size, channels, h, w = activations.shape
    reshaped_activations = activations.transpose((1, 0, 2, 3))
    reshaped_activations[np.isnan(reshaped_activations)] = 0
    reshaped_activations = reshaped_activations.reshape(
        reshaped_activations.shape[0], -1)
    offset = reshaped_activations.min(axis=-1)
    reshaped_activations = reshaped_activations - offset[:, None]

    model = NMF(n_components=n_components, init='random', random_state=0)
    W = model.fit_transform(reshaped_activations)
    H = model.components_
    concepts = W + offset[:, None]
    explanations = H.reshape(n_components, batch_size, h, w)
    explanations = explanations.transpose((1, 0, 2, 3))
    return concepts, explanations


class DeepFeatureFactorization:
    """ Deep Feature Factorization: https://arxiv.org/abs/1806.10206
        This gets a model andcomputes the 2D activations for a target layer,
        and computes Non Negative Matrix Factorization on the activations.

        Optionally it runs a computation on the concept embeddings,
        like running a classifier on them.

        The explanation heatmaps are scalled to the range [0, 1]
        and to the input tensor width and height.
     """

    def __init__(self,
                 model: torch.nn.Module,
                 target_layer: torch.nn.Module,
                 reshape_transform: Callable = None,
                 computation_on_concepts=None
                 ):
        self.model = model
        self.computation_on_concepts = computation_on_concepts
        self.activations_and_grads = ActivationsAndGradients(
            self.model, [target_layer], reshape_transform)

    def __call__(self,
                 input_tensor: torch.Tensor,
                 n_components: int = 16):
        batch_size, channels, h, w = input_tensor.size()
        _ = self.activations_and_grads(input_tensor)

        with torch.no_grad():
            activations = self.activations_and_grads.activations[0].cpu(
            ).numpy()

        concepts, explanations = dff(activations, n_components=n_components)

        processed_explanations = []

        for batch in explanations:
            processed_explanations.append(scale_cam_image(batch, (w, h)))

        if self.computation_on_concepts:
            with torch.no_grad():
                concept_tensors = torch.from_numpy(
                    np.float32(concepts).transpose((1, 0)))
                concept_outputs = self.computation_on_concepts(
                    concept_tensors).cpu().numpy()
            return concepts, processed_explanations, concept_outputs
        else:
            return concepts, processed_explanations

    def __del__(self):
        self.activations_and_grads.release()

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.activations_and_grads.release()
        if isinstance(exc_value, IndexError):
            # Handle IndexError here...
            print(
                f"An exception occurred in ActivationSummary with block: {exc_type}. Message: {exc_value}")
            return True


def run_dff_on_image(model: torch.nn.Module,
                     target_layer: torch.nn.Module,
                     classifier: torch.nn.Module,
                     img_pil: Image,
                     img_tensor: torch.Tensor,
                     reshape_transform=Optional[Callable],
                     n_components: int = 5,
                     top_k: int = 2) -> np.ndarray:
    """ Helper function to create a Deep Feature Factorization visualization for a single image.
        TBD: Run this on a batch with several images.
    """
    rgb_img_float = np.array(img_pil) / 255
    dff = DeepFeatureFactorization(model=model,
                                   reshape_transform=reshape_transform,
                                   target_layer=target_layer,
                                   computation_on_concepts=classifier)

    concepts, batch_explanations, concept_outputs = dff(
        img_tensor[None, :], n_components)

    concept_outputs = torch.softmax(
        torch.from_numpy(concept_outputs),
        axis=-1).numpy()
    concept_label_strings = create_labels_legend(concept_outputs,
                                                 labels=model.config.id2label,
                                                 top_k=top_k)
    visualization = show_factorization_on_image(
        rgb_img_float,
        batch_explanations[0],
        image_weight=0.3,
        concept_labels=concept_label_strings)

    result = np.hstack((np.array(img_pil), visualization))
    return result