File size: 10,294 Bytes
742dfc3 e92e200 742dfc3 a04b287 e92e200 a04b287 e92e200 a04b287 742dfc3 2f1e30c cec147a 742dfc3 34052ff 742dfc3 34052ff 742dfc3 a04b287 7850eab a04b287 ed90aae a04b287 ed90aae a04b287 ed90aae a04b287 ed90aae 34052ff a04b287 34052ff 2f1e30c a04b287 34052ff 2f1e30c 34052ff cec147a 34052ff a04b287 9d7aae7 a04b287 34052ff a04b287 e92e200 a04b287 cec147a a04b287 cec147a a04b287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
from dotenv import load_dotenv
load_dotenv()
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import threading
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.evaluator.run_evaluator import evaluator_runner
def restart_space():
try:
print("Restarting space...")
space_runtime = API.restart_space(repo_id=REPO_ID,token=TOKEN)
print(f"Space restarted successfully: {space_runtime}")
except Exception as e:
print(f"Error restarting space: {str(e)}")
try:
print("Attempting to download datasets again...")
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, force_download=True
)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, force_download=True
)
except Exception as download_error:
print(f"Error downloading datasets: {str(download_error)}")
def init_leaderboard(dataframe):
if dataframe is None:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn())],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn()) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn()) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn().model.name, AutoEvalColumn().license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn()) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn().model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn().precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(AutoEvalColumn().params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
ColumnFilter(AutoEvalColumn().still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
# API.delete_files(repo_id=QUEUE_REPO, token=TOKEN,delete_patterns=["*"],commit_message="Clearing queue",repo_type="dataset")
# API.delete_files(repo_id=RESULTS_REPO, token=TOKEN,delete_patterns=["*"],commit_message="Clearing results",repo_type="dataset")
# sys.exit(0)
### Space initialisation
try:
print(f"\n=== Starting space initialization ===")
print(f"EVAL_REQUESTS_PATH: {EVAL_REQUESTS_PATH}")
print(f"EVAL_RESULTS_PATH: {EVAL_RESULTS_PATH}")
print(f"QUEUE_REPO: {QUEUE_REPO}")
print(f"RESULTS_REPO: {RESULTS_REPO}")
print(f"TOKEN: {bool(TOKEN)}")
print("\n=== Downloading request files ===")
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN,force_download=True
)
print("\n=== Downloading results files ===")
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN,force_download=True
)
print("\n=== Loading leaderboard data ===")
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
print(f"Leaderboard DataFrame shape: {LEADERBOARD_DF.shape if LEADERBOARD_DF is not None else 'None'}")
print("\n=== Loading evaluation queue data ===")
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
print(f"Finished eval queue shape: {finished_eval_queue_df.shape if finished_eval_queue_df is not None else 'None'}")
print(f"Running eval queue shape: {running_eval_queue_df.shape if running_eval_queue_df is not None else 'None'}")
print(f"Pending eval queue shape: {pending_eval_queue_df.shape if pending_eval_queue_df is not None else 'None'}")
except Exception as e:
print(f"\n=== Error during space initialization ===")
print(f"Error: {str(e)}")
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(INTRODUCTION_TEXT)
gr.Markdown(LLM_BENCHMARKS_TEXT)
gr.Markdown(EVALUATION_QUEUE_TEXT)
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
print(running_eval_queue_df)
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=120)
thread = threading.Thread(target=evaluator_runner)
scheduler.start()
thread.start()
demo.queue(default_concurrency_limit=40).launch() |