Spaces:
Sleeping
Sleeping
File size: 11,052 Bytes
8eca2ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import random
import torch
import gc
import gradio as gr
import style as sty
from PIL import Image
from scheduler_mapping import schedulers, apply_scheduler
from utils import *
from diffusers.utils import logging
from query_comfyui import *
logging.set_verbosity_info()
logging.get_logger("diffusers").setLevel(logging.ERROR)
SCHEDULERS = list(schedulers.keys())
SCHEDULERS.insert(0, "Default")
def gen_image(prompt, negative_prompt, width, height,
num_steps, mode, seed, guidance_scale,
lora_weight_file, lora_scale, fast_infer,
scheduler, num_images, progress=gr.Progress(track_tqdm=True)):
"""
Run diffusion model to generate image
"""
progress(0, "Starting image generation...")
for i in range(1, num_steps + 1):
progress(i / num_steps * 100, f"Processing step {i} of {num_steps}...")
images = [Image.open("stuffs/logo.png")]
if len(prompt) == 0:
gr.Info("Please input prompt!", duration=5)
return images
# Query COmfyUI backend
if "Stable Diffusion 3.5" in mode:
if "Medium" in mode:
ckpt_name = "sd3.5_medium.safetensors"
else:
ckpt_name = "sd3.5_large.safetensors"
images = query_sd35(ckpt_name, prompt, negative_prompt,
int(width), int(height),
int(num_images), int(seed),
float(guidance_scale), int(num_steps))
return images
model = TEXT_TO_IMAGE_DICTIONARY[mode]
use_lora = False
_, current_max_memory = get_gpu_info(width, height, num_images)
Text2Image_class = model["pipeline"]
diffusion_configs = {
"use_safetensors": True,
"max_memory": current_max_memory
}
if "device_map" in model:
diffusion_configs["device_map"] = model["device_map"]
if fast_infer:
diffusion_configs["torch_dtype"] = torch.float16
if "FLUX" in mode:
diffusion_configs["torch_dtype"] = torch.bfloat16
if model["path"].endswith('.safetensors'):
pipeline = Text2Image_class.from_single_file(
model["path"], **diffusion_configs)
else:
pipeline = Text2Image_class.from_pretrained(
model["path"], **diffusion_configs)
pipeline.safety_checker = None
try:
pipeline = apply_scheduler(scheduler, pipeline)
except BaseException:
gr.Warning(f"Cannot apply {scheduler} for {mode}. Use default sampler instead")
pipeline = apply_scheduler("Default", pipeline)
# Load LoRA adapter
if lora_weight_file is not None:
directory, file_name = os.path.split(lora_weight_file.name)
try:
pipeline.load_lora_weights(
directory,
weight_name=file_name,
adapter_name=file_name.replace(".safetensors", ''))
gr.Info("LoRA weight loaded succesfully", duration=5)
use_lora = True
except Exception as e:
print(e)
gr.Warning("Cannot load LoRA weight, your model won't use adapter", duration=5)
# Assign GPU for pipeline
# if "FLUX" not in mode and "Stable Diffusion 3" not in mode:
device = assign_gpu(required_vram=10000,
width=width,
height=height,
num_images=num_images)
if device == "cpu":
gr.Warning("No available GPUs for inference")
return images
generator = torch.Generator("cuda").manual_seed(int(seed))
try:
pipeline_configs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"width": nearest_divisible_by_8(int(width)),
"height": nearest_divisible_by_8(int(height)),
"num_inference_steps": int(num_steps),
"generator": generator,
"guidance_scale": float(guidance_scale),
"num_images_per_prompt": num_images
}
if "FLUX" not in mode:
pipeline = pipeline.to(device)
else:
# Adjust for FLUX Pipeline
del pipeline_configs["negative_prompt"]
# Max 256 tokens for prompt
pipeline_configs["max_sequence_length"] = 256
if use_lora:
if "FLUX" in mode or "Stable Diffusion 3" in mode:
pipeline_configs["joint_attention_kwargs"] = {
"scale": lora_scale}
else:
pipeline_configs["cross_attention_kwargs"] = {
"scale": lora_scale}
# Generate images
images = pipeline(**pipeline_configs).images
except Exception as e:
raise gr.Error(f"Exception: {e}", duration=5)
progress(100, "Completed!")
del pipeline
pipeline = None
gc.collect()
torch.cuda.empty_cache()
return images
# -------------------------------------------- Gradio App -------------------------------------------- #
with gr.Blocks(title="TonAI Creative",
theme=sty.app_theme,
css=sty.custom_css) as interface:
gr.HTML(sty.tonai_creative_html)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Basic Usage", open=True):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate")
with gr.Row():
width = gr.components.Slider(
minimum=512, maximum=1920, value=1024, step=8,
label="Width",
scale=1
)
height = gr.components.Slider(
minimum=512, maximum=1920, value=1024, step=8,
label="Height",
scale=1
)
mode = gr.Dropdown(
choices=TEXT_TO_IMAGE_DICTIONARY.keys(),
label="Mode",
filterable=False,
value=list(TEXT_TO_IMAGE_DICTIONARY.keys())[
0], # FLUX.1 Merged is default
interactive=True,
scale=1)
with gr.Row():
generate_btn = gr.Button("Generate", scale=2)
stop_btn = gr.Button("Stop", elem_id="stop-button", scale=1)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="ugly, disfigured, deformed",
placeholder="Instruct the AI model that it should not include")
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
num_steps = gr.components.Slider(
minimum=3, maximum=50, value=20, step=1,
label="Inference Steps",
scale=2
)
with gr.Row():
guidance_scale = gr.components.Slider(
minimum=0, maximum=20, value=3, step=0.1,
label="CFG Scale",
scale=1
)
with gr.Row():
num_images = gr.components.Slider(
minimum=1, maximum=6, value=1, step=1,
label="Number of generated images",
scale=1)
scheduler = gr.Dropdown(
choices=SCHEDULERS,
label="Sampler",
filterable=False,
value=SCHEDULERS[0],
interactive=True,
scale=1)
with gr.Column(scale=1):
seed = gr.Textbox(label="RNG Seed", value=0)
rng_btn = gr.Button("Roll the 🎲", scale=1)
rng_btn.click(
fn=generate_number, inputs=None, outputs=seed)
fast_infer = gr.Checkbox(
label="Fast Inference",
info="Faster run with FP16",
value=True,
scale=1)
with gr.Row():
lora_weight_file = gr.File(
label="LoRA safetensors file",
elem_classes="file-uploader",
file_types=["safetensors"],
min_width=50, height=30, scale=2)
lora_scale = gr.components.Slider(
minimum=0, maximum=1, value=0.8, step=0.01,
label="LoRA Scale",
scale=1
)
with gr.Accordion("Helps", open=False):
gr.Markdown(sty.tips_content)
with gr.Column(scale=1):
gallery = gr.Gallery(
label="Generated Images",
format="png",
elem_id="gallery",
columns=2, rows=2,
preview=True,
object_fit="contain")
click_button_behavior = {
"fn": gen_image,
"outputs": gallery,
"concurrency_limit": 10
}
click_event = generate_btn.click(inputs=[prompt,
negative_prompt,
width,
height,
num_steps,
mode,
seed,
guidance_scale,
lora_weight_file,
lora_scale,
fast_infer,
scheduler,
num_images],
**click_button_behavior)
stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
interface.load(
lambda: gr.update(
value=random.randint(
0, 999999)), None, seed)
if __name__ == '__main__':
allowed_paths = ["stuffs/splash.png", "stuffs/favicon.png"]
interface.queue(default_concurrency_limit=10)
interface.launch(share=False,
root_path="/tonai",
server_name="0.0.0.0",
show_error=True,
favicon_path="stuffs/favicon.png",
allowed_paths=allowed_paths,
max_threads=10) |