Spaces:
tubui
/
Runtime error

File size: 18,162 Bytes
dfec228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import cv2
import itertools
import numpy as np
import random
import torch
import torch.nn.functional as F
import torch.nn as nn

from PIL import Image, ImageOps
import matplotlib.pyplot as plt

def random_blur_kernel(probs, N_blur, sigrange_gauss, sigrange_line, wmin_line):
    N = N_blur
    coords = torch.from_numpy(np.stack(np.meshgrid(range(N_blur), range(N_blur), indexing='ij'), axis=-1)) - (0.5 * (N-1)) # (7,7,2)
    manhat = torch.sum(torch.abs(coords), dim=-1)   # (7, 7)

    # nothing, default
    vals_nothing = (manhat < 0.5).float()           # (7, 7)

    # gauss
    sig_gauss = torch.rand(1)[0] * (sigrange_gauss[1] - sigrange_gauss[0]) + sigrange_gauss[0]
    vals_gauss = torch.exp(-torch.sum(coords ** 2, dim=-1) /2. / sig_gauss ** 2)

    # line
    theta = torch.rand(1)[0] * 2.* np.pi
    v = torch.FloatTensor([torch.cos(theta), torch.sin(theta)]) # (2)
    dists = torch.sum(coords * v, dim=-1)                       # (7, 7)

    sig_line = torch.rand(1)[0] * (sigrange_line[1] - sigrange_line[0]) + sigrange_line[0]
    w_line = torch.rand(1)[0] * (0.5 * (N-1) + 0.1 - wmin_line) + wmin_line

    vals_line = torch.exp(-dists ** 2 / 2. / sig_line ** 2) * (manhat < w_line) # (7, 7)

    t = torch.rand(1)[0]
    vals = vals_nothing
    if t < (probs[0] + probs[1]):
        vals = vals_line
    else:
        vals = vals
    if t < probs[0]:
        vals = vals_gauss
    else:
        vals = vals

    v = vals / torch.sum(vals)      # 归一化 (7, 7)
    z = torch.zeros_like(v)     
    f = torch.stack([v,z,z, z,v,z, z,z,v], dim=0).reshape([3, 3, N, N])
    return f


def get_rand_transform_matrix(image_size, d, batch_size):
    Ms = np.zeros((batch_size, 2, 3, 3))
    for i in range(batch_size):
        tl_x = random.uniform(-d, d)     # Top left corner, top
        tl_y = random.uniform(-d, d)    # Top left corner, left
        bl_x = random.uniform(-d, d)   # Bot left corner, bot
        bl_y = random.uniform(-d, d)    # Bot left corner, left
        tr_x = random.uniform(-d, d)     # Top right corner, top
        tr_y = random.uniform(-d, d)   # Top right corner, right
        br_x = random.uniform(-d, d)  # Bot right corner, bot
        br_y = random.uniform(-d, d)   # Bot right corner, right

        rect = np.array([
            [tl_x, tl_y],
            [tr_x + image_size, tr_y],
            [br_x + image_size, br_y + image_size],
            [bl_x, bl_y +  image_size]], dtype = "float32")

        dst = np.array([
            [0, 0],
            [image_size, 0],
            [image_size, image_size],
            [0, image_size]], dtype = "float32")
        
        M = cv2.getPerspectiveTransform(rect, dst)
        M_inv = np.linalg.inv(M)
        Ms[i, 0, :, :] = M_inv
        Ms[i, 1, :, :] = M
    Ms = torch.from_numpy(Ms).float()

    return Ms
    

def get_rnd_brightness_torch(rnd_bri, rnd_hue, batch_size):
    rnd_hue = torch.FloatTensor(batch_size, 3, 1, 1).uniform_(-rnd_hue, rnd_hue)
    rnd_brightness = torch.FloatTensor(batch_size, 1, 1, 1).uniform_(-rnd_bri, rnd_bri)
    return rnd_hue + rnd_brightness


# reference: https://github.com/mlomnitz/DiffJPEG.git
y_table = np.array(
    [[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60,
                                        55], [14, 13, 16, 24, 40, 57, 69, 56],
     [14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103,
                                        77], [24, 35, 55, 64, 81, 104, 113, 92],
     [49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]],
    dtype=np.float32).T

y_table = nn.Parameter(torch.from_numpy(y_table))
c_table = np.empty((8, 8), dtype=np.float32)
c_table.fill(99)
c_table[:4, :4] = np.array([[17, 18, 24, 47], [18, 21, 26, 66],
                            [24, 26, 56, 99], [47, 66, 99, 99]]).T
c_table = nn.Parameter(torch.from_numpy(c_table))

# 1. RGB -> YCbCr
class rgb_to_ycbcr_jpeg(nn.Module):
    """ Converts RGB image to YCbCr
    Input:
        image(tensor): batch x 3 x height x width
    Outpput:
        result(tensor): batch x height x width x 3
    """
    def __init__(self):
        super(rgb_to_ycbcr_jpeg, self).__init__()
        matrix = np.array(
            [[0.299, 0.587, 0.114], [-0.168736, -0.331264, 0.5],
             [0.5, -0.418688, -0.081312]], dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0., 128., 128.]))
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        image = image.permute(0, 2, 3, 1)
        result = torch.tensordot(image, self.matrix, dims=1) + self.shift
        result.view(image.shape)
        return result

# 2. Chroma subsampling
class chroma_subsampling(nn.Module):
    """ Chroma subsampling on CbCv channels
    Input:
        image(tensor): batch x height x width x 3
    Output:
        y(tensor): batch x height x width
        cb(tensor): batch x height/2 x width/2
        cr(tensor): batch x height/2 x width/2
    """
    def __init__(self):
        super(chroma_subsampling, self).__init__()

    def forward(self, image):
        image_2 = image.permute(0, 3, 1, 2).clone()
        avg_pool = nn.AvgPool2d(kernel_size=2, stride=(2, 2),
                                count_include_pad=False)
        cb = avg_pool(image_2[:, 1, :, :].unsqueeze(1))
        cr = avg_pool(image_2[:, 2, :, :].unsqueeze(1))
        cb = cb.permute(0, 2, 3, 1)
        cr = cr.permute(0, 2, 3, 1)
        return image[:, :, :, 0], cb.squeeze(3), cr.squeeze(3)

# 3. Block splitting
class block_splitting(nn.Module):
    """ Splitting image into patches
    Input:
        image(tensor): batch x height x width
    Output: 
        patch(tensor):  batch x h*w/64 x h x w
    """
    def __init__(self):
        super(block_splitting, self).__init__()
        self.k = 8

    def forward(self, image):
        height, width = image.shape[1:3]
        batch_size = image.shape[0]
        image_reshaped = image.view(batch_size, height // self.k, self.k, -1, self.k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, -1, self.k, self.k)
    
# 4. DCT
class dct_8x8(nn.Module):
    """ Discrete Cosine Transformation
    Input:
        image(tensor): batch x height x width
    Output:
        dcp(tensor): batch x height x width
    """
    def __init__(self):
        super(dct_8x8, self).__init__()
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * x + 1) * u * np.pi / 16) * np.cos(
                (2 * y + 1) * v * np.pi / 16)
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        #
        self.tensor =  nn.Parameter(torch.from_numpy(tensor).float())
        self.scale = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha) * 0.25).float() )
        
    def forward(self, image):
        image = image - 128
        result = self.scale * torch.tensordot(image, self.tensor, dims=2)
        result.view(image.shape)
        return result

# 5. Quantization
class y_quantize(nn.Module):
    """ JPEG Quantization for Y channel
    Input:
        image(tensor): batch x height x width
        rounding(function): rounding function to use
        factor(float): Degree of compression
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self, rounding, factor=1):
        super(y_quantize, self).__init__()
        self.rounding = rounding
        self.factor = factor
        self.y_table = y_table

    def forward(self, image):
        image = image.float() / (self.y_table * self.factor)
        image = self.rounding(image)
        return image


class c_quantize(nn.Module):
    """ JPEG Quantization for CrCb channels
    Input:
        image(tensor): batch x height x width
        rounding(function): rounding function to use
        factor(float): Degree of compression
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self, rounding, factor=1):
        super(c_quantize, self).__init__()
        self.rounding = rounding
        self.factor = factor
        self.c_table = c_table

    def forward(self, image):
        image = image.float() / (self.c_table * self.factor)
        image = self.rounding(image)
        return image


class compress_jpeg(nn.Module):
    """ Full JPEG compression algortihm
    Input:
        imgs(tensor): batch x 3 x height x width
        rounding(function): rounding function to use
        factor(float): Compression factor
    Ouput:
        compressed(dict(tensor)): batch x h*w/64 x 8 x 8
    """
    def __init__(self, rounding=torch.round, factor=1):
        super(compress_jpeg, self).__init__()
        self.l1 = nn.Sequential(
            rgb_to_ycbcr_jpeg(),
            chroma_subsampling()
        )
        self.l2 = nn.Sequential(
            block_splitting(),
            dct_8x8()
        )
        self.c_quantize = c_quantize(rounding=rounding, factor=factor)
        self.y_quantize = y_quantize(rounding=rounding, factor=factor)

    def forward(self, image):
        y, cb, cr = self.l1(image*255)
        components = {'y': y, 'cb': cb, 'cr': cr}
        for k in components.keys():
            comp = self.l2(components[k])
            if k in ('cb', 'cr'):
                comp = self.c_quantize(comp)
            else:
                comp = self.y_quantize(comp)

            components[k] = comp

        return components['y'], components['cb'], components['cr']

# -5. Dequantization
class y_dequantize(nn.Module):
    """ Dequantize Y channel
    Inputs:
        image(tensor): batch x height x width
        factor(float): compression factor
    Outputs:
        image(tensor): batch x height x width
    """
    def __init__(self, factor=1):
        super(y_dequantize, self).__init__()
        self.y_table = y_table
        self.factor = factor

    def forward(self, image):
        return image * (self.y_table * self.factor)


class c_dequantize(nn.Module):
    """ Dequantize CbCr channel
    Inputs:
        image(tensor): batch x height x width
        factor(float): compression factor
    Outputs:
        image(tensor): batch x height x width
    """
    def __init__(self, factor=1):
        super(c_dequantize, self).__init__()
        self.factor = factor
        self.c_table = c_table

    def forward(self, image):
        return image * (self.c_table * self.factor)

# -4. Inverse DCT
class idct_8x8(nn.Module):
    """ Inverse discrete Cosine Transformation
    Input:
        dcp(tensor): batch x height x width
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self):
        super(idct_8x8, self).__init__()
        alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
        self.alpha = nn.Parameter(torch.from_numpy(np.outer(alpha, alpha)).float())
        tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
        for x, y, u, v in itertools.product(range(8), repeat=4):
            tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
                (2 * v + 1) * y * np.pi / 16)
        self.tensor = nn.Parameter(torch.from_numpy(tensor).float())

    def forward(self, image):
        image = image * self.alpha
        result = 0.25 * torch.tensordot(image, self.tensor, dims=2) + 128
        result.view(image.shape)
        return result

# -3. Block joining
class block_merging(nn.Module):
    """ Merge pathces into image
    Inputs:
        patches(tensor) batch x height*width/64, height x width
        height(int)
        width(int)
    Output:
        image(tensor): batch x height x width
    """
    def __init__(self):
        super(block_merging, self).__init__()
        
    def forward(self, patches, height, width):
        k = 8
        batch_size = patches.shape[0]
        image_reshaped = patches.view(batch_size, height//k, width//k, k, k)
        image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
        return image_transposed.contiguous().view(batch_size, height, width)

# -2. Chroma upsampling
class chroma_upsampling(nn.Module):
    """ Upsample chroma layers
    Input: 
        y(tensor): y channel image
        cb(tensor): cb channel
        cr(tensor): cr channel
    Ouput:
        image(tensor): batch x height x width x 3
    """
    def __init__(self):
        super(chroma_upsampling, self).__init__()

    def forward(self, y, cb, cr):
        def repeat(x, k=2):
            height, width = x.shape[1:3]
            x = x.unsqueeze(-1)
            x = x.repeat(1, 1, k, k)
            x = x.view(-1, height * k, width * k)
            return x

        cb = repeat(cb)
        cr = repeat(cr)
        
        return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)

# -1: YCbCr -> RGB
class ycbcr_to_rgb_jpeg(nn.Module):
    """ Converts YCbCr image to RGB JPEG
    Input:
        image(tensor): batch x height x width x 3
    Outpput:
        result(tensor): batch x 3 x height x width
    """
    def __init__(self):
        super(ycbcr_to_rgb_jpeg, self).__init__()

        matrix = np.array(
            [[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]],
            dtype=np.float32).T
        self.shift = nn.Parameter(torch.tensor([0, -128., -128.]))
        self.matrix = nn.Parameter(torch.from_numpy(matrix))

    def forward(self, image):
        result = torch.tensordot(image + self.shift, self.matrix, dims=1)
        result.view(image.shape)
        return result.permute(0, 3, 1, 2)


class decompress_jpeg(nn.Module):
    """ Full JPEG decompression algortihm
    Input:
        compressed(dict(tensor)): batch x h*w/64 x 8 x 8
        rounding(function): rounding function to use
        factor(float): Compression factor
    Ouput:
        image(tensor): batch x 3 x height x width
    """
    def __init__(self, height, width, rounding=torch.round, factor=1):
        super(decompress_jpeg, self).__init__()
        self.c_dequantize = c_dequantize(factor=factor)
        self.y_dequantize = y_dequantize(factor=factor)
        self.idct = idct_8x8()
        self.merging = block_merging()
        self.chroma = chroma_upsampling()
        self.colors = ycbcr_to_rgb_jpeg()
        
        self.height, self.width = height, width
        
    def forward(self, y, cb, cr):
        components = {'y': y, 'cb': cb, 'cr': cr}
        for k in components.keys():
            if k in ('cb', 'cr'):
                comp = self.c_dequantize(components[k])
                height, width = int(self.height/2), int(self.width/2)                
            else:
                comp = self.y_dequantize(components[k])
                height, width = self.height, self.width                
            comp = self.idct(comp)
            components[k] = self.merging(comp, height, width)
            #
        image = self.chroma(components['y'], components['cb'], components['cr'])
        image = self.colors(image)

        image = torch.min(255*torch.ones_like(image),
                          torch.max(torch.zeros_like(image), image))
        return image/255

def diff_round(x):
    """ Differentiable rounding function
    Input:
        x(tensor)
    Output:
        x(tensor)
    """
    return torch.round(x) + (x - torch.round(x))**3

def round_only_at_0(x):
    cond = (torch.abs(x) < 0.5).float()
    return cond * (x ** 3) + (1 - cond) * x

def quality_to_factor(quality):
    """ Calculate factor corresponding to quality
    Input:
        quality(float): Quality for jpeg compression
    Output:
        factor(float): Compression factor
    """
    if quality < 50:
        quality = 5000. / quality
    else:
        quality = 200. - quality*2
    return quality / 100.

def jpeg_compress_decompress(image,
                            #  downsample_c=True,
                             rounding=round_only_at_0,
                             quality=80):
    # image_r = image * 255
    height, width = image.shape[2:4]
    # orig_height, orig_width = height, width
    # if height % 16 != 0 or width % 16 != 0:
    #     # Round up to next multiple of 16
    #     height = ((height - 1) // 16 + 1) * 16
    #     width = ((width - 1) // 16 + 1) * 16

    #     vpad = height - orig_height
    #     wpad = width - orig_width
    #     top = vpad // 2
    #     bottom = vpad - top
    #     left = wpad // 2
    #     right = wpad - left
    # #image = tf.pad(image, [[0, 0], [top, bottom], [left, right], [0, 0]], 'SYMMETRIC')
    # image = torch.pad(image, [[0, 0], [0, vpad], [0, wpad], [0, 0]], 'reflect')

    factor = quality_to_factor(quality)

    compress = compress_jpeg(rounding=rounding, factor=factor).to(image.device)
    decompress = decompress_jpeg(height, width, rounding=rounding, factor=factor).to(image.device)

    y, cb, cr = compress(image)
    recovered = decompress(y, cb, cr)

    return recovered.contiguous()


if __name__ == '__main__':
    ''' test JPEG compress and decompress'''
    # img = Image.open('house.jpg')
    # img = np.array(img) / 255.
    # img_r = np.transpose(img, [2, 0, 1])
    # img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
   
    # recover = jpeg_compress_decompress(img_tensor)

    # recover_arr = recover.detach().squeeze(0).numpy()
    # recover_arr = np.transpose(recover_arr, [1, 2, 0])

    # plt.subplot(121)
    # plt.imshow(img)
    # plt.subplot(122)
    # plt.imshow(recover_arr)
    # plt.show()

    ''' test blur '''
    # blur

    img = Image.open('house.jpg')
    img = np.array(img) / 255.
    img_r = np.transpose(img, [2, 0, 1])
    img_tensor = torch.from_numpy(img_r).unsqueeze(0).float()
    print(img_tensor.shape)

    N_blur=7
    f = random_blur_kernel(probs=[.25, .25], N_blur=N_blur, sigrange_gauss=[1., 3.], sigrange_line=[.25, 1.], wmin_line=3)
    # print(f.shape)
    # print(type(f))
    encoded_image = F.conv2d(img_tensor, f, bias=None, padding=int((N_blur-1)/2))

    encoded_image = encoded_image.detach().squeeze(0).numpy()
    encoded_image = np.transpose(encoded_image, [1, 2, 0])

    plt.subplot(121)
    plt.imshow(img)
    plt.subplot(122)
    plt.imshow(encoded_image)
    plt.show()