File size: 29,007 Bytes
6142a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 |
import numpy as np
import einops
import torch
import torch as th
import torch.nn as nn
from torch.nn import functional as thf
import pytorch_lightning as pl
import torchvision
from copy import deepcopy
from ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from contextlib import contextmanager, nullcontext
from einops import rearrange, repeat
from torchvision.utils import make_grid
from ldm.modules.attention import SpatialTransformer
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.util import log_txt_as_img, exists, instantiate_from_config, default
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.modules.diffusionmodules.model import Encoder
import lpips
import kornia
from kornia import color
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class View(nn.Module):
def __init__(self, *shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.view(*self.shape)
class SecretEncoder3(nn.Module):
def __init__(self, secret_len, base_res=16, resolution=64) -> None:
super().__init__()
log_resolution = int(np.log2(resolution))
log_base = int(np.log2(base_res))
self.secret_len = secret_len
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, base_res*base_res*3),
nn.SiLU(),
View(-1, 3, base_res, base_res),
nn.Upsample(scale_factor=(2**(log_resolution-log_base), 2**(log_resolution-log_base))), # chx16x16 -> chx256x256
zero_module(conv_nd(2, 3, 3, 3, padding=1))
) # secret len -> ch x res x res
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
return None
def encode(self, x):
x = self.secret_scaler(x)
return x
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.encode(c)
return c, None
class SecretEncoder4(nn.Module):
"""same as SecretEncoder3 but with ch as input"""
def __init__(self, secret_len, ch=3, base_res=16, resolution=64) -> None:
super().__init__()
log_resolution = int(np.log2(resolution))
log_base = int(np.log2(base_res))
self.secret_len = secret_len
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, base_res*base_res*ch),
nn.SiLU(),
View(-1, ch, base_res, base_res),
nn.Upsample(scale_factor=(2**(log_resolution-log_base), 2**(log_resolution-log_base))), # chx16x16 -> chx256x256
zero_module(conv_nd(2, ch, ch, 3, padding=1))
) # secret len -> ch x res x res
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
return None
def encode(self, x):
x = self.secret_scaler(x)
return x
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.encode(c)
return c, None
class SecretEncoder6(nn.Module):
"""join img emb with secret emb"""
def __init__(self, secret_len, ch=3, base_res=16, resolution=64, emode='c3') -> None:
super().__init__()
assert emode in ['c3', 'c2', 'm3']
if emode == 'c3': # c3: concat c and x each has ch channels
secret_ch = ch
join_ch = 2*ch
elif emode == 'c2': # c2: concat c (2) and x ave (1)
secret_ch = 2
join_ch = ch
elif emode == 'm3': # m3: multiply c (ch) and x (ch)
secret_ch = ch
join_ch = ch
# m3: multiply c (ch) and x ave (1)
log_resolution = int(np.log2(resolution))
log_base = int(np.log2(base_res))
self.secret_len = secret_len
self.emode = emode
self.resolution = resolution
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, base_res*base_res*secret_ch),
nn.SiLU(),
View(-1, secret_ch, base_res, base_res),
nn.Upsample(scale_factor=(2**(log_resolution-log_base), 2**(log_resolution-log_base))), # chx16x16 -> chx256x256
) # secret len -> ch x res x res
self.join_encoder = nn.Sequential(
conv_nd(2, join_ch, join_ch, 3, padding=1),
nn.SiLU(),
conv_nd(2, join_ch, ch, 3, padding=1),
nn.SiLU(),
conv_nd(2, ch, ch, 3, padding=1),
nn.SiLU()
)
self.out_layer = zero_module(conv_nd(2, ch, ch, 3, padding=1))
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
return None
def encode(self, x):
x = self.secret_scaler(x)
return x
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.encode(c)
if self.emode == 'c3':
x = torch.cat([x, c], dim=1)
elif self.emode == 'c2':
x = torch.cat([x.mean(dim=1, keepdim=True), c], dim=1)
elif self.emode == 'm3':
x = x * c
dx = self.join_encoder(x)
dx = self.out_layer(dx)
return dx, None
class SecretEncoder5(nn.Module):
"""same as SecretEncoder3 but with ch as input"""
def __init__(self, secret_len, ch=3, base_res=16, resolution=64, joint=False) -> None:
super().__init__()
log_resolution = int(np.log2(resolution))
log_base = int(np.log2(base_res))
self.secret_len = secret_len
self.joint = joint
self.resolution = resolution
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, base_res*base_res*ch),
nn.SiLU(),
View(-1, ch, base_res, base_res),
nn.Upsample(scale_factor=(2**(log_resolution-log_base), 2**(log_resolution-log_base))), # chx16x16 -> chx256x256
) # secret len -> ch x res x res
if joint:
self.join_encoder = nn.Sequential(
conv_nd(2, 2*ch, 2*ch, 3, padding=1),
nn.SiLU(),
conv_nd(2, 2*ch, ch, 3, padding=1),
nn.SiLU()
)
self.out_layer = zero_module(conv_nd(2, ch, ch, 3, padding=1))
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
return None
def encode(self, x):
x = self.secret_scaler(x)
return x
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.encode(c)
if self.joint:
x = thf.interpolate(x, size=(self.resolution, self.resolution), mode="bilinear", align_corners=False, antialias=True)
c = self.join_encoder(torch.cat([x, c], dim=1))
c = self.out_layer(c)
return c, None
class SecretEncoder2(nn.Module):
def __init__(self, secret_len, embed_dim, ddconfig, ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
ema_decay=None,
learn_logvar=False) -> None:
super().__init__()
log_resolution = int(np.log2(ddconfig.resolution))
self.secret_len = secret_len
self.learn_logvar = learn_logvar
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.encoder.conv_out = zero_module(self.encoder.conv_out)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, 32*32*ddconfig.out_ch),
nn.SiLU(),
View(-1, ddconfig.out_ch, 32, 32),
nn.Upsample(scale_factor=(2**(log_resolution-5), 2**(log_resolution-5))), # chx16x16 -> chx256x256
# zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
) # secret len -> ch x res x res
# out_resolution = ddconfig.resolution//(len(ddconfig.ch_mult)-1)
# self.out_layer = zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
self.use_ema = ema_decay is not None
if self.use_ema:
self.ema_decay = ema_decay
assert 0. < ema_decay < 1.
self.model_ema = LitEma(self, decay=ema_decay)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
misses, ignores = self.load_state_dict(sd, strict=False)
print(f"[SecretEncoder] Restored from {path}, misses: {misses}, ignores: {ignores}")
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
return None
self.encoder.load_state_dict(ae_model.encoder.state_dict())
self.quant_conv.load_state_dict(ae_model.quant_conv.state_dict())
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
posterior = h
return posterior
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.secret_scaler(c)
x = torch.cat([x, c], dim=1)
z = self.encode(x)
# z = self.out_layer(z)
return z, None
class SecretEncoder7(nn.Module):
def __init__(self, secret_len, ddconfig, ckpt_path=None,
ignore_keys=[],embed_dim=3,
ema_decay=None) -> None:
super().__init__()
log_resolution = int(np.log2(ddconfig.resolution))
self.secret_len = secret_len
self.encoder = Encoder(**ddconfig)
# self.encoder.conv_out = zero_module(self.encoder.conv_out)
self.quant_conv = nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, 32*32*2),
nn.SiLU(),
View(-1, 2, 32, 32),
# nn.Upsample(scale_factor=(2**(log_resolution-5), 2**(log_resolution-5))), # chx16x16 -> chx256x256
# zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
) # secret len -> ch x res x res
# out_resolution = ddconfig.resolution//(len(ddconfig.ch_mult)-1)
# self.out_layer = zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
self.use_ema = ema_decay is not None
if self.use_ema:
self.ema_decay = ema_decay
assert 0. < ema_decay < 1.
self.model_ema = LitEma(self, decay=ema_decay)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
misses, ignores = self.load_state_dict(sd, strict=False)
print(f"[SecretEncoder7] Restored from {path}, misses: {len(misses)}, ignores: {len(ignores)}. Do not worry as we are not using the decoder and the secret encoder is a novel module.")
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
# return None
self.encoder.load_state_dict(deepcopy(ae_model.encoder.state_dict()))
self.quant_conv.load_state_dict(deepcopy(ae_model.quant_conv.state_dict()))
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.secret_scaler(c) # [B, 2, 32, 32]
# c = thf.interpolate(c, size=x.shape[-2:], mode="bilinear", align_corners=False)
c = thf.interpolate(c, size=x.shape[-2:], mode="nearest")
x = 0.2125 * x[:,0,...] + 0.7154 *x[:,1,...] + 0.0721 * x[:,2,...]
x = torch.cat([x.unsqueeze(1), c], dim=1)
z = self.encode(x)
# z = self.out_layer(z)
return z, None
class SecretEncoder(nn.Module):
def __init__(self, secret_len, embed_dim, ddconfig, ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
ema_decay=None,
learn_logvar=False) -> None:
super().__init__()
log_resolution = int(np.log2(ddconfig.resolution))
self.secret_len = secret_len
self.learn_logvar = learn_logvar
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.use_ema = ema_decay is not None
if self.use_ema:
self.ema_decay = ema_decay
assert 0. < ema_decay < 1.
self.model_ema = LitEma(self, decay=ema_decay)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.secret_scaler = nn.Sequential(
nn.Linear(secret_len, 32*32*ddconfig.out_ch),
nn.SiLU(),
View(-1, ddconfig.out_ch, 32, 32),
nn.Upsample(scale_factor=(2**(log_resolution-5), 2**(log_resolution-5))), # chx16x16 -> chx256x256
zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
) # secret len -> ch x res x res
# out_resolution = ddconfig.resolution//(len(ddconfig.ch_mult)-1)
self.out_layer = zero_module(conv_nd(2, ddconfig.out_ch, ddconfig.out_ch, 3, padding=1))
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
misses, ignores = self.load_state_dict(sd, strict=False)
print(f"[SecretEncoder] Restored from {path}, misses: {misses}, ignores: {ignores}")
def copy_encoder_weight(self, ae_model):
# misses, ignores = self.load_state_dict(ae_state_dict, strict=False)
self.encoder.load_state_dict(ae_model.encoder.state_dict())
self.quant_conv.load_state_dict(ae_model.quant_conv.state_dict())
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def forward(self, x, c):
# x: [B, C, H, W], c: [B, secret_len]
c = self.secret_scaler(c)
x = x + c
posterior = self.encode(x)
z = posterior.sample()
z = self.out_layer(z)
return z, posterior
class ControlAE(pl.LightningModule):
def __init__(self,
first_stage_key,
first_stage_config,
control_key,
control_config,
decoder_config,
loss_config,
noise_config='__none__',
use_ema=False,
secret_warmup=False,
scale_factor=1.,
ckpt_path="__none__",
):
super().__init__()
self.scale_factor = scale_factor
self.control_key = control_key
self.first_stage_key = first_stage_key
self.ae = instantiate_from_config(first_stage_config)
self.control = instantiate_from_config(control_config)
self.decoder = instantiate_from_config(decoder_config)
self.crop = kornia.augmentation.CenterCrop((224, 224), cropping_mode="resample") # early training phase
if noise_config != '__none__':
print('Using noise')
self.noise = instantiate_from_config(noise_config)
# copy weights from first stage
self.control.copy_encoder_weight(self.ae)
# freeze first stage
self.ae.eval()
self.ae.train = disabled_train
for p in self.ae.parameters():
p.requires_grad = False
self.loss_layer = instantiate_from_config(loss_config)
# early training phase
# self.fixed_input = True
self.fixed_x = None
self.fixed_img = None
self.fixed_input_recon = None
self.fixed_control = None
self.register_buffer("fixed_input", torch.tensor(True))
# secret warmup
self.secret_warmup = secret_warmup
self.secret_baselen = 2
self.secret_len = control_config.params.secret_len
if self.secret_warmup:
assert self.secret_len == 2**(int(np.log2(self.secret_len)))
self.use_ema = use_ema
if self.use_ema:
print('Using EMA')
self.control_ema = LitEma(self.control)
self.decoder_ema = LitEma(self.decoder)
print(f"Keeping EMAs of {len(list(self.control_ema.buffers()) + list(self.decoder_ema.buffers()))}.")
if ckpt_path != '__none__':
self.init_from_ckpt(ckpt_path, ignore_keys=[])
def get_warmup_secret(self, old_secret):
# old_secret: [B, secret_len]
# new_secret: [B, secret_len]
if self.secret_warmup:
bsz = old_secret.shape[0]
nrepeats = self.secret_len // self.secret_baselen
new_secret = torch.zeros((bsz, self.secret_baselen), dtype=torch.float).random_(0, 2).repeat_interleave(nrepeats, dim=1)
return new_secret.to(old_secret.device)
else:
return old_secret
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.control_ema.store(self.control.parameters())
self.decoder_ema.store(self.decoder.parameters())
self.control_ema.copy_to(self.control)
self.decoder_ema.copy_to(self.decoder)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.control_ema.restore(self.control.parameters())
self.decoder_ema.restore(self.decoder.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.control_ema(self.control)
self.decoder_ema(self.decoder)
def compute_loss(self, pred, target):
# return thf.mse_loss(pred, target, reduction="none").mean(dim=(1, 2, 3))
lpips_loss = self.lpips_loss(pred, target).mean(dim=[1,2,3])
pred_yuv = color.rgb_to_yuv((pred + 1) / 2)
target_yuv = color.rgb_to_yuv((target + 1) / 2)
yuv_loss = torch.mean((pred_yuv - target_yuv)**2, dim=[2,3])
yuv_loss = 1.5*torch.mm(yuv_loss, self.yuv_scales).squeeze(1)
return lpips_loss + yuv_loss
def forward(self, x, image, c):
if self.control.__class__.__name__ == 'SecretEncoder6':
eps, posterior = self.control(x, c)
else:
eps, posterior = self.control(image, c)
return x + eps, posterior
@torch.no_grad()
def get_input(self, batch, return_first_stage=False, bs=None):
image = batch[self.first_stage_key]
control = batch[self.control_key]
control = self.get_warmup_secret(control)
if bs is not None:
image = image[:bs]
control = control[:bs]
else:
bs = image.shape[0]
# encode image 1st stage
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
x = self.encode_first_stage(image).detach()
image_rec = self.decode_first_stage(x).detach()
# check if using fixed input (early training phase)
# if self.training and self.fixed_input:
if self.fixed_input:
if self.fixed_x is None: # first iteration
print('[TRAINING] Warmup - using fixed input image for now!')
self.fixed_x = x.detach().clone()[:bs]
self.fixed_img = image.detach().clone()[:bs]
self.fixed_input_recon = image_rec.detach().clone()[:bs]
self.fixed_control = control.detach().clone()[:bs] # use for log_images with fixed_input option only
x, image, image_rec = self.fixed_x, self.fixed_img, self.fixed_input_recon
out = [x, control]
if return_first_stage:
out.extend([image, image_rec])
return out
def decode_first_stage(self, z):
z = 1./self.scale_factor * z
image_rec = self.ae.decode(z)
return image_rec
def encode_first_stage(self, image):
encoder_posterior = self.ae.encode(image)
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
return self.scale_factor * z
def shared_step(self, batch):
x, c, img, _ = self.get_input(batch, return_first_stage=True)
# import pdb; pdb.set_trace()
x, posterior = self(x, img, c)
image_rec = self.decode_first_stage(x)
# resize
if img.shape[-1] > 256:
img = thf.interpolate(img, size=(256, 256), mode='bilinear', align_corners=False).detach()
image_rec = thf.interpolate(image_rec, size=(256, 256), mode='bilinear', align_corners=False)
if hasattr(self, 'noise') and self.noise.is_activated():
image_rec_noised = self.noise(image_rec, self.global_step, p=0.9)
else:
image_rec_noised = self.crop(image_rec) # center crop
image_rec_noised = torch.clamp(image_rec_noised, -1, 1)
pred = self.decoder(image_rec_noised)
loss, loss_dict = self.loss_layer(img, image_rec, posterior, c, pred, self.global_step)
bit_acc = loss_dict["bit_acc"]
bit_acc_ = bit_acc.item()
if (bit_acc_ > 0.98) and (not self.fixed_input) and self.noise.is_activated():
self.loss_layer.activate_ramp(self.global_step)
if (bit_acc_ > 0.95) and (not self.fixed_input): # ramp up image loss at late training stage
if hasattr(self, 'noise') and (not self.noise.is_activated()):
self.noise.activate(self.global_step)
if (bit_acc_ > 0.9) and self.fixed_input: # execute only once
print(f'[TRAINING] High bit acc ({bit_acc_}) achieved, switch to full image dataset training.')
self.fixed_input = ~self.fixed_input
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
loss_dict = {f"train/{key}": val for key, val in loss_dict.items()}
self.log_dict(loss_dict, prog_bar=True,
logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step,
prog_bar=True, logger=True, on_step=True, on_epoch=False)
# if self.use_scheduler:
# lr = self.optimizers().param_groups[0]['lr']
# self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
loss_dict_no_ema = {f"val/{key}": val for key, val in loss_dict_no_ema.items() if key != 'img_lw'}
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {'val/' + key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
@torch.no_grad()
def log_images(self, batch, fixed_input=False, **kwargs):
log = dict()
if fixed_input and self.fixed_img is not None:
x, c, img, img_recon = self.fixed_x, self.fixed_control, self.fixed_img, self.fixed_input_recon
else:
x, c, img, img_recon = self.get_input(batch, return_first_stage=True)
x, _ = self(x, img, c)
image_out = self.decode_first_stage(x)
if hasattr(self, 'noise') and self.noise.is_activated():
img_noise = self.noise(image_out, self.global_step, p=1.0)
log['noised'] = img_noise
log['input'] = img
log['output'] = image_out
log['recon'] = img_recon
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.control.parameters()) + list(self.decoder.parameters())
optimizer = torch.optim.AdamW(params, lr=lr)
return optimizer
|