File size: 6,051 Bytes
6142a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
wrapper for imagenet-c transformations
@author: Tu Bui @surrey.ac.uk
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import random
import numpy as np 
from PIL import Image 
from imagenet_c import corrupt, corruption_dict


class IdentityAugment(object):
    def __call__(self, x):
        return x 

    def __repr__(self):
        s = f'()'
        return self.__class__.__name__ + s

class RandomImagenetC(object):
    # transform id 5 (motion blur) and 7 (snow) requires WandImage which is not fork-safe, while id 4 (glass blur) and 6 (zoom blur) are super slow thus we move it to validation (unseen), 12 (elastic transform) is non realistic
    methods = {'train': np.array([0,1,2,3,8,9,10,11,13,14,15, 16, 17, 18]),#np.arange(15),
               'val': np.array([4, 5, 6, 7, 12]),
               'test': np.array([0,1,2,3,8,9,10,11,13,14,15, 16, 17, 18])
    }
    method_names = list(corruption_dict.keys())
    def __init__(self, min_severity=1, max_severity=5, phase='all', p=1.0,n=19):
        assert phase in ['train', 'val', 'test', 'all'], ValueError(f'{phase} not recognised. Must be one of [train, val, all]')
        if phase == 'all':
            self.corrupt_ids = np.concatenate(list(self.methods.values()))
        else:
            self.corrupt_ids = self.methods[phase]
        self.corrupt_ids = self.corrupt_ids[:n]  # first n tforms
        self.phase = phase
        self.severity = np.arange(min_severity, max_severity+1)
        self.p = p  # probability to apply a transformation

    def __call__(self, x, corrupt_id=None, corrupt_strength=None):
        # input: x PIL image
        if corrupt_id is None:
            if len(self.corrupt_ids)==0:  # do nothing
                return x
            corrupt_id = np.random.choice(self.corrupt_ids)
        else:
            assert corrupt_id in range(19)

        severity = np.random.choice(self.severity) if corrupt_strength is None else corrupt_strength
        assert severity in self.severity, f'Error! Corrupt strength {severity} isnt supported.'
        
        if np.random.rand() < self.p:
            org_size = x.size 
            x = np.asarray(x.convert('RGB').resize((224, 224), Image.BILINEAR))[:,:,::-1]
            x = corrupt(x, severity, corruption_number=corrupt_id)
            x = Image.fromarray(x[:,:,::-1])
            if x.size != org_size:
                x = x.resize(org_size, Image.BILINEAR)
        return x 

    def transform_with_fixed_severity(self, x, severity, corrupt_id=None):
        if corrupt_id is None:
            corrupt_id = np.random.choice(self.corrupt_ids)
        else:
            assert corrupt_id in self.corrupt_ids
        assert severity > 0 and severity < 6
        org_size = x.size 
        x = np.asarray(x.convert('RGB').resize((224, 224), Image.BILINEAR))[:,:,::-1]
        x = corrupt(x, severity, corruption_number=corrupt_id)
        x = Image.fromarray(x[:,:,::-1])
        if x.size != org_size:
            x = x.resize(org_size, Image.BILINEAR)
        return x

    def __repr__(self):
        s = f'(severity={self.severity}, phase={self.phase}, p={self.p},ids={self.corrupt_ids})'
        return self.__class__.__name__ + s


class NoiseResidual(object):
    def __init__(self, k=16):
        self.k = k 
    def __call__(self, x):
        h, w = x.height, x.width
        x1 = x.resize((w//self.k,h//self.k), Image.BILINEAR).resize((w, h), Image.BILINEAR)
        x1 = np.abs(np.array(x).astype(np.float32) - np.array(x1).astype(np.float32))
        x1 = (x1 - x1.min())/(x1.max() - x1.min() + np.finfo(np.float32).eps)
        x1 = Image.fromarray((x1*255).astype(np.uint8))
        return x1
    def __repr__(self):
        s = f'(k={self.k}'
        return self.__class__.__name__ + s


def get_transforms(img_mean=[0.5, 0.5, 0.5], img_std=[0.5, 0.5, 0.5], rsize=256, csize=224, pertubation=True, dct=False, residual=False, max_c=19):
    from torchvision import transforms
    prep = transforms.Compose([
            transforms.Resize(rsize),
            transforms.RandomHorizontalFlip(),
            transforms.RandomCrop(csize)])
    if pertubation:
        pertubation_train = RandomImagenetC(max_severity=5, phase='train', p=0.95,n=max_c)
        pertubation_val = RandomImagenetC(max_severity=5, phase='train', p=1.0,n=max_c)
        pertubation_test = RandomImagenetC(max_severity=5, phase='val', p=1.0,n=max_c)
    else:
        pertubation_train = pertubation_val = pertubation_test = IdentityAugment()
    if dct:
        from .image_tools import DCT 
        norm = [
                DCT(),
                transforms.ToTensor(),
                transforms.Normalize(mean=img_mean, std=img_std)]
    else:
        norm = [
                transforms.ToTensor(),
                transforms.Normalize(mean=img_mean, std=img_std)]
    if residual:
        norm.insert(0, NoiseResidual())

    preprocess = {
        'train': [prep, pertubation_train, transforms.Compose(norm)],

        'val': [prep, pertubation_val, transforms.Compose(norm)],

        'test_unseen': [prep, pertubation_test, transforms.Compose(norm)],

        'clean': transforms.Compose([transforms.Resize(csize)] + norm)
        }
    return preprocess


# ## example
# from PIL import Image 
# import numpy as np 
# import time
# from imagenet_c import corrupt, corruption_dict
# im = Image.open('/vol/research/tubui1/projects/gan_prov/gan_models/stargan2/test.jpg').convert('RGB').resize((224,224), Image.BILINEAR)
# im.save('original.jpg')
# im = np.array(im)[:,:,::-1]  # BRG
# t = np.zeros(19)
# for i, key in enumerate(corruption_dict.keys()):
#     begin = time.time()
#     for j in range(10):
#         out = corrupt(im, 5, corruption_number=i)
#     end = time.time()
#     t[i] = end-begin
#     # Image.fromarray(out[:,:,::-1]).save(f'imc_{key}.jpg')
#     print(f'{i} - {key}: {end-begin}')

# for i,k in enumerate(corruption_dict.keys()):
#     print(i, k, t[i])