File size: 13,688 Bytes
6142a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import math
import torch
from torch import nn
from torch.nn import functional as thf
import pytorch_lightning as pl
from ldm.util import instantiate_from_config
import einops
import kornia
import numpy as np
import torchvision
from contextlib import contextmanager
from ldm.modules.ema import LitEma
class FlAE(pl.LightningModule):
def __init__(self,
cover_key,
secret_key,
secret_len,
resolution,
secret_encoder_config,
secret_decoder_config,
loss_config,
noise_config='__none__',
ckpt_path="__none__",
use_ema=False
):
super().__init__()
self.cover_key = cover_key
self.secret_key = secret_key
secret_encoder_config.params.secret_len = secret_len
secret_decoder_config.params.secret_len = secret_len
secret_encoder_config.params.resolution = resolution
secret_decoder_config.params.resolution = 224
self.encoder = instantiate_from_config(secret_encoder_config)
self.decoder = instantiate_from_config(secret_decoder_config)
self.loss_layer = instantiate_from_config(loss_config)
if noise_config != '__none__':
print('Using noise')
self.noise = instantiate_from_config(noise_config)
self.use_ema = use_ema
if self.use_ema:
print('Using EMA')
self.encoder_ema = LitEma(self.encoder)
self.decoder_ema = LitEma(self.decoder)
print(f"Keeping EMAs of {len(list(self.encoder_ema.buffers()) + list(self.decoder_ema.buffers()))}.")
if ckpt_path != "__none__":
self.init_from_ckpt(ckpt_path, ignore_keys=[])
# early training phase
self.fixed_img = None
self.fixed_secret = None
self.register_buffer("fixed_input", torch.tensor(True))
self.crop = kornia.augmentation.CenterCrop((224, 224), cropping_mode="resample") # early training phase
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.encoder_ema.store(self.encoder.parameters())
self.decoder_ema.store(self.decoder.parameters())
self.encoder_ema.copy_to(self.encoder)
self.decoder_ema.copy_to(self.decoder)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.encoder_ema.restore(self.encoder.parameters())
self.decoder_ema.restore(self.decoder.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.encoder_ema(self.encoder)
self.decoder_ema(self.decoder)
@torch.no_grad()
def get_input(self, batch, bs=None):
image = batch[self.cover_key]
secret = batch[self.secret_key]
if bs is not None:
image = image[:bs]
secret = secret[:bs]
else:
bs = image.shape[0]
# encode image 1st stage
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
# check if using fixed input (early training phase)
# if self.training and self.fixed_input:
if self.fixed_input:
if self.fixed_img is None: # first iteration
print('[TRAINING] Warmup - using fixed input image for now!')
self.fixed_img = image.detach().clone()[:bs]
self.fixed_secret = secret.detach().clone()[:bs] # use for log_images with fixed_input option only
image = self.fixed_img
new_bs = min(secret.shape[0], image.shape[0])
image, secret = image[:new_bs], secret[:new_bs]
out = [image, secret]
return out
def forward(self, cover, secret):
# return a tuple (stego, residual)
enc_out = self.encoder(cover, secret)
if self.encoder.return_residual:
return cover + enc_out, enc_out
else:
return enc_out, enc_out - cover
def shared_step(self, batch):
x, s = self.get_input(batch)
stego, residual = self(x, s)
if hasattr(self, "noise") and self.noise.is_activated():
stego_noised = self.noise(stego, self.global_step, p=0.9)
else:
stego_noised = self.crop(stego)
stego_noised = torch.clamp(stego_noised, -1, 1)
spred = self.decoder(stego_noised)
loss, loss_dict = self.loss_layer(x, stego, None, s, spred, self.global_step)
bit_acc = loss_dict["bit_acc"]
bit_acc_ = bit_acc.item()
if (bit_acc_ > 0.98) and (not self.fixed_input) and self.noise.is_activated():
self.loss_layer.activate_ramp(self.global_step)
if (bit_acc_ > 0.95) and (not self.fixed_input): # ramp up image loss at late training stage
if hasattr(self, 'noise') and (not self.noise.is_activated()):
self.noise.activate(self.global_step)
if (bit_acc_ > 0.9) and self.fixed_input: # execute only once
print(f'[TRAINING] High bit acc ({bit_acc_}) achieved, switch to full image dataset training.')
self.fixed_input = ~self.fixed_input
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
loss_dict = {f"train/{key}": val for key, val in loss_dict.items()}
self.log_dict(loss_dict, prog_bar=True,
logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step,
prog_bar=True, logger=True, on_step=True, on_epoch=False)
# if self.use_scheduler:
# lr = self.optimizers().param_groups[0]['lr']
# self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
loss_dict_no_ema = {f"val/{key}": val for key, val in loss_dict_no_ema.items() if key != 'img_lw'}
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {'val/' + key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
@torch.no_grad()
def log_images(self, batch, fixed_input=False, **kwargs):
log = dict()
if fixed_input and self.fixed_img is not None:
x, s = self.fixed_img, self.fixed_secret
else:
x, s = self.get_input(batch)
stego, residual = self(x, s)
if hasattr(self, 'noise') and self.noise.is_activated():
img_noise = self.noise(stego, self.global_step, p=1.0)
log['noised'] = img_noise
log['input'] = x
log['stego'] = stego
log['residual'] = (residual - residual.min()) / (residual.max() - residual.min() + 1e-8)*2 - 1
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.encoder.parameters()) + list(self.decoder.parameters())
optimizer = torch.optim.AdamW(params, lr=lr)
return optimizer
class SecretEncoder(nn.Module):
def __init__(self, resolution=256, secret_len=100, return_residual=False, act='tanh') -> None:
super().__init__()
self.secret_len = secret_len
self.return_residual = return_residual
self.act_fn = lambda x: torch.tanh(x) if act == 'tanh' else thf.sigmoid(x) * 2.0 -1.0
self.secret_dense = nn.Linear(secret_len, 16*16*3)
log_resolution = int(math.log(resolution, 2))
assert resolution == 2 ** log_resolution, f"Image resolution must be a power of 2, got {resolution}."
self.secret_upsample = nn.Upsample(scale_factor=(2**(log_resolution-4), 2**(log_resolution-4)))
self.conv1 = nn.Conv2d(2 * 3, 32, 3, 1, 1)
self.conv2 = nn.Conv2d(32, 32, 3, 2, 1)
self.conv3 = nn.Conv2d(32, 64, 3, 2, 1)
self.conv4 = nn.Conv2d(64, 128, 3, 2, 1)
self.conv5 = nn.Conv2d(128, 256, 3, 2, 1)
self.pad6 = nn.ZeroPad2d((0, 1, 0, 1))
self.up6 = nn.Conv2d(256, 128, 2, 1)
self.upsample6 = nn.Upsample(scale_factor=(2, 2))
self.conv6 = nn.Conv2d(128 + 128, 128, 3, 1, 1)
self.pad7 = nn.ZeroPad2d((0, 1, 0, 1))
self.up7 = nn.Conv2d(128, 64, 2, 1)
self.upsample7 = nn.Upsample(scale_factor=(2, 2))
self.conv7 = nn.Conv2d(64 + 64, 64, 3, 1, 1)
self.pad8 = nn.ZeroPad2d((0, 1, 0, 1))
self.up8 = nn.Conv2d(64, 32, 2, 1)
self.upsample8 = nn.Upsample(scale_factor=(2, 2))
self.conv8 = nn.Conv2d(32 + 32, 32, 3, 1, 1)
self.pad9 = nn.ZeroPad2d((0, 1, 0, 1))
self.up9 = nn.Conv2d(32, 32, 2, 1)
self.upsample9 = nn.Upsample(scale_factor=(2, 2))
self.conv9 = nn.Conv2d(32 + 32 + 2 * 3, 32, 3, 1, 1)
self.conv10 = nn.Conv2d(32, 32, 3, 1, 1)
self.residual = nn.Conv2d(32, 3, 1)
def forward(self, image, secret):
fingerprint = thf.relu(self.secret_dense(secret))
fingerprint = fingerprint.view((-1, 3, 16, 16))
fingerprint_enlarged = self.secret_upsample(fingerprint)
# try:
inputs = torch.cat([fingerprint_enlarged, image], dim=1)
# except:
# print(fingerprint_enlarged.shape, image.shape, fingerprint.shape)
# import pdb; pdb.set_trace()
conv1 = thf.relu(self.conv1(inputs))
conv2 = thf.relu(self.conv2(conv1))
conv3 = thf.relu(self.conv3(conv2))
conv4 = thf.relu(self.conv4(conv3))
conv5 = thf.relu(self.conv5(conv4))
up6 = thf.relu(self.up6(self.pad6(self.upsample6(conv5))))
merge6 = torch.cat([conv4, up6], dim=1)
conv6 = thf.relu(self.conv6(merge6))
up7 = thf.relu(self.up7(self.pad7(self.upsample7(conv6))))
merge7 = torch.cat([conv3, up7], dim=1)
conv7 = thf.relu(self.conv7(merge7))
up8 = thf.relu(self.up8(self.pad8(self.upsample8(conv7))))
merge8 = torch.cat([conv2, up8], dim=1)
conv8 = thf.relu(self.conv8(merge8))
up9 = thf.relu(self.up9(self.pad9(self.upsample9(conv8))))
merge9 = torch.cat([conv1, up9, inputs], dim=1)
conv9 = thf.relu(self.conv9(merge9))
conv10 = thf.relu(self.conv10(conv9))
residual = self.residual(conv10)
residual = self.act_fn(residual)
return residual
class SecretEncoder1(nn.Module):
def __init__(self, resolution=256, secret_len=100) -> None:
pass
class SecretDecoder(nn.Module):
def __init__(self, arch='resnet18', resolution=224, secret_len=100):
super().__init__()
self.resolution = resolution
self.arch = arch
if arch == 'resnet18':
self.decoder = torchvision.models.resnet18(pretrained=True, progress=False)
self.decoder.fc = nn.Linear(self.decoder.fc.in_features, secret_len)
elif arch == 'resnet50':
self.decoder = torchvision.models.resnet50(pretrained=True, progress=False)
self.decoder.fc = nn.Linear(self.decoder.fc.in_features, secret_len)
elif arch == 'simple':
self.decoder = SimpleCNN(resolution, secret_len)
else:
raise ValueError('Unknown architecture')
def forward(self, image):
if self.arch in ['resnet50', 'resnet18'] and image.shape[-1] > self.resolution:
image = thf.interpolate(image, size=(self.resolution, self.resolution), mode='bilinear', align_corners=False)
x = self.decoder(image)
return x
class SimpleCNN(nn.Module):
def __init__(self, resolution=224, secret_len=100):
super().__init__()
self.resolution = resolution
self.IMAGE_CHANNELS = 3
self.decoder = nn.Sequential(
nn.Conv2d(self.IMAGE_CHANNELS, 32, (3, 3), 2, 1), # resolution / 2
nn.ReLU(),
nn.Conv2d(32, 32, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, 2, 1), # resolution / 4
nn.ReLU(),
nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(),
nn.Conv2d(64, 64, 3, 2, 1), # resolution / 8
nn.ReLU(),
nn.Conv2d(64, 128, 3, 2, 1), # resolution / 16
nn.ReLU(),
nn.Conv2d(128, 128, (3, 3), 2, 1), # resolution / 32
nn.ReLU(),
)
self.dense = nn.Sequential(
nn.Linear(resolution * resolution * 128 // 32 // 32, 512),
nn.ReLU(),
nn.Linear(512, secret_len),
)
def forward(self, image):
x = self.decoder(image)
x = x.view(-1, self.resolution * self.resolution * 128 // 32 // 32)
return self.dense(x) |