Spaces:
Running
Running
File size: 11,288 Bytes
92d2175 040a6c6 92d2175 040a6c6 92d2175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
"""
AUDIO PROCESSING TOOL - Groq Audio Only
Handles audio file transcription using Groq Whisper API
"""
import os
import tempfile
import requests
from typing import Dict, Any, Optional
from groq import Groq
from .state_manager import get_agent_state
class AudioTool:
def __init__(self):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY", ""))
self.model = "whisper-large-v3"
print("🎵 Audio Tool (Groq Whisper) initialized")
def process_audio(self, audio_input: str, **kwargs) -> Dict[str, Any]:
"""
Process audio files using Groq Whisper API
Supports URLs, file paths, and base64 audio
"""
try:
audio_path = self._prepare_audio_file(audio_input)
if not audio_path:
return self._error_result("Could not prepare audio file")
# Transcribe using Groq Whisper
transcript = self._transcribe_with_groq(audio_path)
# Cleanup temp file if created
if audio_path.startswith(tempfile.gettempdir()):
os.unlink(audio_path)
result = {
"transcript": transcript,
"source": audio_input,
"model": self.model,
"tool": "groq_whisper"
}
# Update agent state
state = get_agent_state()
state.cached_data["audio_analysis"] = result
return {
"success": True,
"data": result,
"summary": f"Audio transcribed: {transcript[:100]}..."
}
except Exception as e:
error_msg = f"Audio processing failed: {str(e)}"
print(f"❌ {error_msg}")
return self._error_result(error_msg)
def _prepare_audio_file(self, audio_input: str) -> Optional[str]:
"""Prepare audio file for processing"""
try:
# If it's a URL, download it
if audio_input.startswith(('http://', 'https://')):
return self._download_audio(audio_input)
# If it's a local file path
if os.path.exists(audio_input):
return audio_input
# If it's base64, decode it
if self._is_base64(audio_input):
return self._decode_base64_audio(audio_input)
return None
except Exception as e:
print(f"⚠️ Audio prep error: {str(e)}")
return None
def _download_audio(self, url: str) -> str:
"""Download audio from URL to temp file"""
response = requests.get(url, stream=True)
response.raise_for_status()
# Create temp file with audio extension
suffix = '.mp3' # Default
if '.' in url:
suffix = '.' + url.split('.')[-1].split('?')[0]
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
for chunk in response.iter_content(chunk_size=8192):
tmp_file.write(chunk)
return tmp_file.name
def _is_base64(self, s: str) -> bool:
"""Check if string is base64 encoded"""
import base64
try:
if isinstance(s, str):
s_bytes = bytes(s, 'ascii')
elif isinstance(s, bytes):
s_bytes = s
else:
return False
return base64.b64encode(base64.b64decode(s_bytes)) == s_bytes
except Exception:
return False
def _decode_base64_audio(self, b64_string: str) -> str:
"""Decode base64 audio to temp file"""
import base64
audio_data = base64.b64decode(b64_string)
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as tmp_file:
tmp_file.write(audio_data)
return tmp_file.name
def _transcribe_with_groq(self, audio_path: str) -> str:
"""Transcribe audio using Groq Whisper API"""
with open(audio_path, "rb") as audio_file:
transcript = self.client.audio.transcriptions.create(
file=audio_file,
model=self.model,
language="en", # Auto-detect or specify
response_format="text"
)
return transcript if isinstance(transcript, str) else transcript.text
def _error_result(self, error_msg: str) -> Dict[str, Any]:
"""Standard error result format"""
return {
"success": False,
"error": error_msg,
"data": None,
"summary": f"Audio processing failed: {error_msg}"
}
def download_audio_file(task_id: str) -> Optional[str]:
"""
Download audio file from API
"""
try:
api_url = "https://agents-course-unit4-scoring.hf.space"
file_url = f"{api_url}/files/{task_id}"
response = requests.get(file_url, timeout=30)
if response.status_code == 200:
# Determine file extension
content_type = response.headers.get('content-type', '')
if 'audio' in content_type:
if 'mp3' in content_type:
suffix = '.mp3'
elif 'wav' in content_type:
suffix = '.wav'
elif 'ogg' in content_type:
suffix = '.ogg'
elif 'm4a' in content_type:
suffix = '.m4a'
else:
suffix = '.mp3' # Default
else:
suffix = '.mp3' # Default for unknown audio types
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
tmp_file.write(response.content)
return tmp_file.name
else:
return None
except Exception as e:
print(f"Error downloading audio: {e}")
return None
def transcribe_audio_groq(task_id: str = "", audio_path: str = "", language: str = "en") -> str:
"""
Main function: Transcribe audio với Groq Whisper API - model whisper-large-v3
Args:
task_id: ID để download file từ API
audio_path: Đường dẫn file audio local (nếu có)
language: Ngôn ngữ transcription (default: "en")
Returns:
Transcribed text
"""
target_audio_path = None
try:
# Initialize Groq client
groq_api_key = os.environ.get("GROQ_API_KEY")
if not groq_api_key:
return "Error: GROQ_API_KEY not found in environment variables"
groq_client = Groq(api_key=groq_api_key)
# Xác định đường dẫn audio
if audio_path and os.path.exists(audio_path):
target_audio_path = audio_path
elif task_id:
target_audio_path = download_audio_file(task_id)
if not target_audio_path:
return "Error: Could not download audio file"
else:
return "Error: No audio path or task_id provided"
# Kiểm tra file audio tồn tại
if not os.path.exists(target_audio_path):
return "Error: Audio file not found"
# Transcribe với Groq Whisper
with open(target_audio_path, "rb") as audio_file:
transcription = groq_client.audio.transcriptions.create(
file=(os.path.basename(target_audio_path), audio_file.read()),
model="whisper-large-v3",
response_format="text",
language=language,
temperature=0.0 # Deterministic results
)
# Lấy kết quả
if hasattr(transcription, 'text'):
result = transcription.text
else:
result = str(transcription)
# Cleanup downloaded file nếu cần
if task_id and target_audio_path != audio_path:
try:
os.unlink(target_audio_path)
except:
pass
return result.strip()
except Exception as e:
# Cleanup file nếu có lỗi
if task_id and target_audio_path and target_audio_path != audio_path:
try:
os.unlink(target_audio_path)
except:
pass
return f"Audio transcription error: {str(e)}"
def transcribe_audio_with_details(task_id: str = "", audio_path: str = "", language: str = "en") -> dict:
"""
Transcribe audio với thêm chi tiết metadata
Returns:
Dict chứa transcription và metadata
"""
try:
# Lấy transcription
text = transcribe_audio_groq(task_id, audio_path, language)
# Metadata cơ bản
metadata = {
"model": "whisper-large-v3",
"language": language,
"provider": "groq"
}
# Nếu có file local, lấy thêm thông tin
if audio_path and os.path.exists(audio_path):
file_size = os.path.getsize(audio_path)
metadata["file_size"] = file_size
metadata["file_path"] = audio_path
return {
"transcription": text,
"metadata": metadata,
"success": not text.startswith("Error:")
}
except Exception as e:
return {
"transcription": f"Error: {str(e)}",
"metadata": {},
"success": False
}
# Fallback function nếu Groq không khả dụng
def fallback_audio_info(task_id: str = "", audio_path: str = "") -> str:
"""
Fallback function khi không thể transcribe audio
"""
try:
target_audio_path = None
if audio_path and os.path.exists(audio_path):
target_audio_path = audio_path
elif task_id:
target_audio_path = download_audio_file(task_id)
if not target_audio_path:
return "Error: Could not download audio file"
else:
return "Error: No audio path or task_id provided"
# Basic file info
file_size = os.path.getsize(target_audio_path)
result = f"Audio file detected - Size: {file_size} bytes. Groq transcription not available. Please describe the audio content."
# Cleanup
if task_id and target_audio_path != audio_path:
try:
os.unlink(target_audio_path)
except:
pass
return result
except Exception as e:
return f"Audio processing error: {str(e)}"
# Test function
if __name__ == "__main__":
# Test với file audio local (nếu có)
test_audio = "/path/to/test/audio.mp3"
if os.path.exists(test_audio):
result = transcribe_audio_groq(audio_path=test_audio)
print("Transcription Result:", result)
else:
print("No test audio found")
# Test với task_id (cần API key)
# result = transcribe_audio_groq(task_id="some_task_id")
# print("Transcription Result:", result) |