File size: 10,264 Bytes
0db0445 d044800 0db0445 ccfe63c bc71d3d 522d800 d044800 0db0445 9aaf868 0346aed ccfe63c 0346aed 0db0445 d044800 0db0445 d044800 227c84a 0db0445 d044800 227c84a 0db0445 227c84a 0db0445 d044800 0db0445 d044800 0db0445 d044800 522d800 7711122 522d800 7711122 d044800 ccfe63c 7711122 227c84a 522d800 7ccc6c1 227c84a 522d800 7711122 522d800 7711122 0346aed d044800 7711122 d044800 7711122 ccfe63c d044800 ccfe63c 0db0445 7711122 ccfe63c 0db0445 d044800 0db0445 227c84a 0346aed 0db0445 0346aed 0db0445 0346aed 0db0445 ccfe63c 0db0445 0346aed 0db0445 0346aed 0db0445 0346aed 0db0445 0346aed 0db0445 0346aed d044800 0346aed 0db0445 0346aed 227c84a 0346aed d044800 227c84a 0db0445 0346aed ccfe63c 0346aed d044800 ccfe63c d044800 ccfe63c e51e541 ccfe63c 0346aed ccfe63c 0db0445 ccfe63c 0346aed ccfe63c d044800 0db0445 d044800 0db0445 0346aed 0db0445 227c84a ccfe63c 0346aed ccfe63c 0346aed 0db0445 0346aed ccfe63c 0346aed ccfe63c 0346aed d044800 0346aed 0db0445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import streamlit as st
import torch
import yaml
from transformers import AutoTokenizer, AutoModelForCausalLM
# Set page config first
st.set_page_config(page_title="Coding Multiple Choice Q&A", layout="wide")
# Use the specified model
MODEL_PATH = "tuandunghcmut/Qwen25_Coder_MultipleChoice_v4"
from coding_examples import CODING_EXAMPLES_BY_CATEGORY
# Flatten examples
CODING_EXAMPLES = []
for category, examples in CODING_EXAMPLES_BY_CATEGORY.items():
for example in examples:
example["category"] = category
CODING_EXAMPLES.append(example)
class PromptCreator:
def __init__(self, prompt_type="yaml"):
self.prompt_type = prompt_type
def format_choices(self, choices):
if not choices: return ""
if isinstance(choices, str): return choices
return "\n".join(f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices))
def get_max_letter(self, choices):
if not choices: return "A"
if isinstance(choices, str):
num_choices = len([line for line in choices.split("\n") if line.strip()])
return "A" if num_choices == 0 else chr(64 + num_choices)
return chr(64 + len(choices))
def create_inference_prompt(self, question, choices):
if not question: return ""
formatted_choices = self.format_choices(choices)
max_letter = self.get_max_letter(choices)
return f"""Question: {question}
Choices:
{formatted_choices}
Analyze this question step-by-step and provide a detailed explanation.
Your response MUST be in YAML format as follows:
understanding: |
<your understanding of what the question is asking>
analysis: |
<your analysis of each option>
reasoning: |
<your step-by-step reasoning process>
conclusion: |
<your final conclusion>
answer: <single letter A through {max_letter}>
The answer field MUST contain ONLY a single character letter."""
class QwenModelHandler:
def __init__(self, model_path):
with st.spinner("Loading model..."):
try:
# Explicitly disable quantization options
self.tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
# Load with standard precision on CPU
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-1.5B-Instruct")
self.model = PeftModel.from_pretrained(base_model, "tuandunghcmut/Qwen25_Coder_MultipleChoice_v4")
# self.model = AutoModelForCausalLM.from_pretrained(
# model_path,
# torch_dtype=torch.float32,
# device_map="cpu",
# trust_remote_code=True,
# # Explicitly disable quantization
# load_in_8bit=False,
# load_in_4bit=False
# )
if self.tokenizer.pad_token is None and self.tokenizer.eos_token is not None:
self.tokenizer.pad_token = self.tokenizer.eos_token
except Exception as e:
st.error(f"Error: {str(e)}")
raise
def generate_response(self, prompt, max_tokens=512, temperature=0.7,
top_p=0.9, top_k=50, repetition_penalty=1.0,
do_sample=True):
try:
inputs = self.tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
pad_token_id=self.tokenizer.eos_token_id,
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if prompt in response:
response = response[len(prompt):].strip()
return response
except Exception as e:
return f"Error during generation: {str(e)}"
# Create prompt without requiring model
def create_prompt(question, choices):
creator = PromptCreator(prompt_type="yaml")
return creator.create_inference_prompt(question, choices)
def main():
# Initialize session state
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if 'model_output' not in st.session_state:
st.session_state.model_output = ""
st.title("Coding Multiple Choice Q&A with YAML Reasoning")
st.warning("⚠️ Running on CPU - model loading and inference will be slow")
# Two-column layout
col1, col2 = st.columns([4, 6])
with col1:
st.subheader("Examples")
# Category selector
category_options = ["All Categories"] + list(CODING_EXAMPLES_BY_CATEGORY.keys())
selected_category = st.selectbox("Select a category", category_options)
# Example selector
if selected_category == "All Categories":
example_options = [f"Example {i+1}: {ex['question']}" for i, ex in enumerate(CODING_EXAMPLES)]
else:
example_options = []
start_idx = 0
for cat, examples in CODING_EXAMPLES_BY_CATEGORY.items():
if cat == selected_category:
example_options = [f"Example {start_idx+i+1}: {ex['question']}" for i, ex in enumerate(examples)]
break
start_idx += len(examples)
selected_example = st.selectbox("Select an example question", [""] + example_options)
# Process selected example
if selected_example:
try:
example_idx = int(selected_example.split(":")[0].split()[-1]) - 1
example = CODING_EXAMPLES[example_idx]
question = example["question"]
choices = "\n".join(f"{chr(65+i)}. {choice}" for i, choice in enumerate(example["choices"]))
except:
question = ""
choices = ""
else:
question = ""
choices = ""
st.subheader("Your Question")
question_input = st.text_area("Question", value=question, height=100,
placeholder="Enter your coding question here...")
choices_input = st.text_area("Choices", value=choices, height=150,
placeholder="Enter each choice on a new line...")
# Model Parameters
temperature = st.slider("Temperature", 0.0, 1.0, 0.7, 0.1)
with st.expander("Advanced Parameters"):
max_tokens = st.slider("Max Tokens", 128, 1024, 512, 128)
top_p = st.slider("Top-p", 0.1, 1.0, 0.9, 0.1)
top_k = st.slider("Top-k", 1, 100, 50, 10)
repetition_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1, 0.1)
do_sample = st.checkbox("Enable Sampling", True)
# Load model button
if not st.session_state.model_loaded:
if st.button("Load Model", type="primary"):
try:
st.session_state.model_handler = QwenModelHandler(MODEL_PATH)
st.session_state.prompt_creator = PromptCreator("yaml")
st.session_state.model_loaded = True
# st.experimental_rerun()
st.rerun()
except Exception as e:
st.error(f"Failed to load model: {str(e)}")
# Generate button
if st.session_state.model_loaded:
generate_button = st.button("Generate Response", type="primary")
else:
st.info("Please load the model first")
generate_button = False
with col2:
# Show prompt
st.subheader("Model Input")
if question_input and choices_input:
prompt = create_prompt(question_input, choices_input)
st.text_area("Prompt", value=prompt, height=200, disabled=True)
else:
st.text_area("Prompt", value="", height=200, disabled=True)
# Results Area
st.subheader("Model Response")
st.text_area("Response", value=st.session_state.model_output, height=300)
# YAML parsing
if st.session_state.model_output:
try:
with st.expander("Raw Output"):
st.code(st.session_state.model_output, language="yaml")
try:
yaml_data = yaml.safe_load(st.session_state.model_output)
with st.expander("Parsed Output", expanded=True):
st.json(yaml_data)
except:
st.warning("Could not parse output as YAML")
except:
pass
# Handle generation
if generate_button and st.session_state.model_loaded:
if not question_input or not choices_input:
st.error("Please provide both a question and choices.")
else:
try:
prompt = st.session_state.prompt_creator.create_inference_prompt(question_input, choices_input)
with st.spinner("Generating response..."):
response = st.session_state.model_handler.generate_response(
prompt=prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample
)
st.session_state.model_output = response
st.experimental_rerun()
except Exception as e:
st.error(f"Error generating response: {e}")
if __name__ == "__main__":
main() |