File size: 2,802 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10

from mmcv.parallel import MMDataParallel
from mmcv.runner import EpochBasedRunner
from mmcv.utils import get_logger


class Model(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        self.loss_fn = nn.CrossEntropyLoss()

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def train_step(self, data, optimizer):
        images, labels = data
        predicts = self(images)  # -> self.__call__() -> self.forward()
        loss = self.loss_fn(predicts, labels)
        return {'loss': loss}


if __name__ == '__main__':
    model = Model()
    if torch.cuda.is_available():
        # only use gpu:0 to train
        # Solved issue https://github.com/open-mmlab/mmcv/issues/1470
        model = MMDataParallel(model.cuda(), device_ids=[0])

    # dataset and dataloader
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    trainset = CIFAR10(
        root='data', train=True, download=True, transform=transform)
    trainloader = DataLoader(
        trainset, batch_size=128, shuffle=True, num_workers=2)

    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
    logger = get_logger('mmcv')
    # runner is a scheduler to manage the training
    runner = EpochBasedRunner(
        model,
        optimizer=optimizer,
        work_dir='./work_dir',
        logger=logger,
        max_epochs=4)

    # learning rate scheduler config
    lr_config = dict(policy='step', step=[2, 3])
    # configuration of optimizer
    optimizer_config = dict(grad_clip=None)
    # configuration of saving checkpoints periodically
    checkpoint_config = dict(interval=1)
    # save log periodically and multiple hooks can be used simultaneously
    log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
    # register hooks to runner and those hooks will be invoked automatically
    runner.register_training_hooks(
        lr_config=lr_config,
        optimizer_config=optimizer_config,
        checkpoint_config=checkpoint_config,
        log_config=log_config)

    runner.run([trainloader], [('train', 1)])