File size: 5,724 Bytes
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c434dc1
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68bb4ad
d7e58f0
 
 
32fe019
f6cbd78
 
 
 
 
 
 
 
 
 
 
32fe019
 
7e3060e
 
32fe019
 
d7e58f0
 
 
f6cbd78
 
d7e58f0
 
 
 
8fe6621
d7e58f0
7e3060e
d7e58f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import sys
import subprocess
import pkg_resources

def is_package_installed(package_name):
    try:
        pkg_resources.get_distribution(package_name)
        return True
    except pkg_resources.DistributionNotFound:
        return False

if is_package_installed("mmcv"):
    print("MMCV is installed.")
else:
    print("MMCV is not installed. Build it from the source.")
    os.environ["MMCV_WITH_OPS"] = "1"
    os.environ["FORCE_MLU"] = "1"
    subprocess.run(["pip", "install", "-e", "./mmcv"], check=True)
    subprocess.run(["pip", "list"], check=True)

if is_package_installed("pytorch3d"):
    print("pytorch3d is installed.")
else:
    print("pytorch3d is not installed. Build it from the source.")
    subprocess.run(["pip", "install", "-e", "./pytorch3d"], check=True)

if is_package_installed("MultiScaleDeformableAttention"):
    print("MultiScaleDeformableAttention is installed.")
else:
    print("MultiScaleDeformableAttention is not installed. Build it from the source.")
    subprocess.run(["pip", "install", "-e", "./models/aios/ops"], check=True)
    
import os.path as osp
from pathlib import Path
import cv2
import gradio as gr
import torch
import math
import spaces
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="ttxskk/AiOS", filename="aios_checkpoint.pth", local_dir="/home/user/app/pretrained_models")

OUT_FOLDER = '/home/user/app/demo_out'
os.makedirs(OUT_FOLDER, exist_ok=True)

DEMO_CONFIG = '/home/user/app/config/aios_smplx_demo.py'
MODEL_PATH = '/home/user/app/pretrained_models/aios_checkpoint.pth'
@spaces.GPU(enable_queue=True, duration=300)
def infer(video_input, batch_size, threshold=0.3, num_person=1):
    os.system(f'rm -rf {OUT_FOLDER}/*')
    os.system(f'torchrun --nproc_per_node 1 \
             main.py \
            -c {DEMO_CONFIG} \
            --options batch_size={batch_size} backbone="resnet50" num_person={num_person} threshold={threshold} \
            --resume {MODEL_PATH} \
            --eval \
            --inference \
            --inference_input {video_input} \
            --to_vid \
            --output_dir {OUT_FOLDER}')
    
    video_path = os.path.join(OUT_FOLDER, 'demo_vid.mp4')
    save_path_img = os.path.join(OUT_FOLDER, 'res_img')
    save_path_mesh = os.path.join(OUT_FOLDER, 'mesh')
    save_mesh_file = os.path.join(OUT_FOLDER, 'mesh.zip')
    os.system(f'zip -r {save_mesh_file} {save_path_mesh}')
    yield video_path, save_mesh_file

TITLE = """

<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <div>
    <h1 align="center">AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation</h1>
  </div>
</div>

<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href="https://ttxskk.github.io/AiOS/" target="_blank"><img src='https://img.shields.io/badge/Project-Page-Green'></a>
        <a href="https://github.com/ttxskk/AiOS" target="_blank"><img src='https://img.shields.io/badge/Github-Code-blue'></a>
        <a href="https://ttxskk.github.io/AiOS/assets/aios_cvpr24.pdf" target="_blank"><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
    </div>
</div>
<div style="font-size: 1.1rem; color: #555; max-width: 800px; margin: 1rem auto; line-height: 1.5; justify-content: center; align-items: center; text-align: center;">
  <div>
    <p>Recover multiple expressive human pose and shape from an RGB image without any additional requirements, such as an off-the-shelf detection model.</h1>
  </div>
</div>
"""
VIDEO = '''
<center>
    <iframe width="960" height="540" 
    src="https://www.youtube.com/embed/yzCL7TYpzvc?si=EoxWNE6VPBxsy7Go" 
    title="AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation" 
    frameborder="0" 
    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" 
    allowfullscreen>
    </iframe>
</center><br/>
'''

DESCRIPTION = '''
<p>
Note: Score threshold defines the minimum confidence level for person detection. The default value is 0.3. 
If the confidence score of a detected person falls below this score threshold, the detection will be discarded.
</p>
'''
with gr.Blocks(title="AiOS", theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    
    gr.Markdown(TITLE)
    gr.HTML(VIDEO)
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column(scale=2):
            video_input = gr.Video(label="Input video", elem_classes="video")
        with gr.Column(scale=1):
            batch_size = gr.Textbox(label="Batch Size", type="text", value=16)
            num_person = gr.Textbox(label="Number of Person", type="text", value=1)
            threshold = gr.Slider(0, 1.0, value=0.3, label='Score Threshold')
            send_button = gr.Button("Infer")
    gr.HTML("""<br/>""")
        
    with gr.Row():
        with gr.Column():
            # processed_frames = gr.Image(label="Last processed frame")
            video_output = gr.Video(elem_classes="video")
        with gr.Column():
            meshes_output = gr.File(label="3D meshes")
    
    send_button.click(fn=infer, inputs=[video_input, batch_size, threshold, num_person], outputs=[video_output, meshes_output])
    # example_videos = gr.Examples([
    #     ['./assets/01.mp4'], 
    #     ['./assets/02.mp4'], 
    #     ['./assets/03.mp4'],
    #     ['./assets/04.mp4'], 
    #     ['./assets/05.mp4'], 
    #     ['./assets/06.mp4'], 
    #     ['./assets/07.mp4'], 
    #     ['./assets/08.mp4'], 
    #     ['./assets/09.mp4'], 
    #     ], 
    #     inputs=[video_input, 0.5])
    
demo.queue().launch(debug=True)