tttoaster's picture
Update src/models/mllm/seed_x.py
ddca281 verified
raw
history blame
11 kB
import os
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import LogitsProcessorList
from .generation import AutoImageTokenGenerationProcessor
#from .utils import load_zero3_checkpoint
BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'
def cosine_loss(rec, target):
target = target / target.norm(dim=-1, keepdim=True)
rec = rec / rec.norm(dim=-1, keepdim=True)
rec_loss = (1 - (target * rec).sum(-1)).mean()
return rec_loss
class ContinuousLVLM(nn.Module):
def __init__(self, llm, input_resampler, output_resampler, lm_loss_scale=1.0, rec_loss_scale=1.0, add_patch_pos=False, vit_down=False, mse=False) -> None:
super().__init__()
self.llm = llm
self.input_resampler = input_resampler
self.output_resampler = output_resampler
self.lm_loss_scale = lm_loss_scale
self.rec_loss_scale = rec_loss_scale
self.add_patch_pos = add_patch_pos
self.vit_down = vit_down
if self.vit_down:
self.pool_size = 4
self.stride = 4
self.mse = mse
if self.mse:
self.mse_loss = torch.nn.MSELoss()
self.add_patch_pos = add_patch_pos
if self.add_patch_pos:
patch_dim = self.input_resampler.embed_dim
self.patch_pos_embed = nn.Parameter((patch_dim**-0.5) * torch.randn(4, patch_dim))
def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask,
ids_cmp_mask, patch_positions=None):
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096
bz, sq, dim = input_embeds.shape
if image_embeds is not None:
image_embeds_cmp = image_embeds[embeds_cmp_mask] # num_imgs_in_batch x nq_in x dim_in, 4 x 64 x 4096
if patch_positions is not None:
patch_positions = patch_positions[embeds_cmp_mask]
if image_embeds is not None and image_embeds_cmp.shape[0] > 0:
image_embeds_lm = self.input_resampler(image_embeds_cmp) # num_imgs_in_batch x nq x dim, 4 x 64 x 4096
if self.add_patch_pos and patch_positions is not None:
# assert patch_positions is not None
patch_positions = patch_positions.to(
image_embeds_lm
)
rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1)
image_embeds_lm = image_embeds_lm + rel_pos_embed
has_image_cmp = True
else:
image_embeds_cmp_fake = torch.randn( 1 , self.output_resampler.num_queries,
self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
# image_embeds = torch.randn(bz, self.output_resampler.num_queries,
# self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
image_embeds_lm = self.input_resampler(image_embeds_cmp_fake)
if self.add_patch_pos:
rel_pos_embed = self.patch_pos_embed.mean(0, keepdim=True).unsqueeze(1) # 1, 1, dim
image_embeds_lm = image_embeds_lm + rel_pos_embed
has_image_cmp = False
has_image_input = image_embeds is not None and embeds_cmp_mask.sum().item() > 0
has_image_output = image_embeds is not None and embeds_gen_mask.sum().item() > 0
if has_image_input:
input_embeds[ids_cmp_mask] = image_embeds_lm.reshape(-1, dim) # eg, 128 x 4096
# zero_loss = 0.0
else:
input_embeds[:1, :self.input_resampler.num_queries, :] += 0.0 * image_embeds_lm[:1, :, :]
output_lm = self.llm(attention_mask=attention_mask,
inputs_embeds=input_embeds,
labels=labels,
output_hidden_states=True,
return_dict=True)
lm_loss = output_lm['loss']
last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096
if has_image_output:
target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096
if self.vit_down:
target_embeds = target_embeds.permute(0, 2, 1) # NLD -> NDL
target_embeds = F.avg_pool1d(target_embeds, kernel_size=self.pool_size, stride=self.stride)
target_embeds = target_embeds.permute(0, 2, 1)
num_imgs_for_rec = target_embeds.shape[0]
output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1, dim) # 128 x 4096 -> 2 x 64 x 4096
recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096
if self.mse:
# rec_loss = self.mse_loss(recon_image_embeds, target_embeds.detach())
rec_loss = F.mse_loss(recon_image_embeds, target_embeds.detach()) # for zero3 compatibility
else:
rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach())
else:
output_image_embeds = torch.randn(1, self.input_resampler.num_queries,
self.input_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) + 0.0 * last_hidden_state[0, :self.input_resampler.num_queries, :]
recon_image_embeds = self.output_resampler(output_image_embeds)
# target_embeds = torch.randn(1, self.output_resampler.num_queries,
# self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype)
# rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach) * 0.0
rec_loss = 0.0 * recon_image_embeds.sum()
total_loss = self.lm_loss_scale * lm_loss + self.rec_loss_scale * rec_loss
return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss}
def generate(self,
tokenizer,
prompt=None,
input_ids=None,
image_embeds=None,
embeds_cmp_mask=None,
ids_cmp_mask=None,
logits_processor=None,
num_img_gen_tokens=64,
temperature=0.7,
num_beams=1,
max_new_tokens=120,
top_p=0.5,
dtype=torch.float16,
device='cuda',
patch_positions=None):
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(
AutoImageTokenGenerationProcessor(tokenizer=tokenizer, num_img_gen_tokens=num_img_gen_tokens))
if prompt is not None:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(device=device)
input_embeds = self.llm.get_input_embeddings()(input_ids)
bz, sq, dim = input_embeds.shape
if image_embeds is not None:
assert embeds_cmp_mask is not None and ids_cmp_mask is not None
with torch.no_grad():
image_embeds_lm = self.input_resampler(image_embeds)
if self.add_patch_pos:
assert patch_positions is not None
patch_positions = patch_positions.to(
image_embeds_lm
)
rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1)
image_embeds_lm = image_embeds_lm + rel_pos_embed
#print(input_embeds.shape, ids_cmp_mask.shape, image_embeds_lm.shape, embeds_cmp_mask.shape)
input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim)
generation_config = {
'temperature': temperature,
'num_beams': num_beams,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'do_sample': False
}
# generate_ids = self.llm.generate(input_ids=input_ids, **generation_config)
output = self.llm.generate(input_ids=input_ids,
inputs_embeds=input_embeds,
output_hidden_states=True,
return_dict_in_generate=True,
logits_processor=logits_processor,
**generation_config)
generate_ids = output.sequences[0][input_ids.shape[1]:]
generate_id_list = generate_ids.tolist()
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states],
dim=1)[0, input_ids.shape[1]:, :]
eoi_indices = torch.where(generate_ids == eoi_token_id)[0].tolist()
num_gen_imgs = len(eoi_indices)
text_mask = torch.ones_like(generate_ids, dtype=torch.bool)
has_img_output = num_gen_imgs > 0
if has_img_output:
img_gen_feats = []
for eoi_idx in eoi_indices:
img_gen_feats.append(last_hidden_states[eoi_idx - num_img_gen_tokens:eoi_idx])
text_mask[eoi_idx - num_img_gen_tokens:eoi_idx] = False
img_gen_feats = torch.stack(img_gen_feats)
img_gen_feat = self.output_resampler(img_gen_feats)
else:
img_gen_feat = None
text_mask[generate_ids == boi_token_id] = False
generate_ids = generate_ids[text_mask]
generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False)
return {
'text': generate_text,
'has_img_output': has_img_output,
'img_gen_feat': img_gen_feat,
'num_gen_imgs': num_gen_imgs
}
@classmethod
def from_pretrained(cls, llm, input_resampler, output_resampler, pretrained_model_path=None, **kwargs):
model = cls(llm=llm, input_resampler=input_resampler, output_resampler=output_resampler, **kwargs)
if os.environ.get('DEBUG_FLAG', 'False') == 'True':
return model
if pretrained_model_path is not None:
ckpt = torch.load(pretrained_model_path, map_location='cpu')
missing, unexpected = model.load_state_dict(ckpt, strict=False)
#load_zero3_checkpoint(model, ckpt)
return model