import os import torch import torch.nn as nn from torch.nn import functional as F from transformers import LogitsProcessorList from .generation import AutoImageTokenGenerationProcessor #from .utils import load_zero3_checkpoint BOI_TOKEN = '' EOI_TOKEN = '' IMG_TOKEN = '' def cosine_loss(rec, target): target = target / target.norm(dim=-1, keepdim=True) rec = rec / rec.norm(dim=-1, keepdim=True) rec_loss = (1 - (target * rec).sum(-1)).mean() return rec_loss class ContinuousLVLM(nn.Module): def __init__(self, llm, input_resampler, output_resampler, lm_loss_scale=1.0, rec_loss_scale=1.0, add_patch_pos=False, vit_down=False, mse=False) -> None: super().__init__() self.llm = llm self.input_resampler = input_resampler self.output_resampler = output_resampler self.lm_loss_scale = lm_loss_scale self.rec_loss_scale = rec_loss_scale self.add_patch_pos = add_patch_pos self.vit_down = vit_down if self.vit_down: self.pool_size = 4 self.stride = 4 self.mse = mse if self.mse: self.mse_loss = torch.nn.MSELoss() self.add_patch_pos = add_patch_pos if self.add_patch_pos: patch_dim = self.input_resampler.embed_dim self.patch_pos_embed = nn.Parameter((patch_dim**-0.5) * torch.randn(4, patch_dim)) def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask, ids_cmp_mask, patch_positions=None): input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096 bz, sq, dim = input_embeds.shape if image_embeds is not None: image_embeds_cmp = image_embeds[embeds_cmp_mask] # num_imgs_in_batch x nq_in x dim_in, 4 x 64 x 4096 if patch_positions is not None: patch_positions = patch_positions[embeds_cmp_mask] if image_embeds is not None and image_embeds_cmp.shape[0] > 0: image_embeds_lm = self.input_resampler(image_embeds_cmp) # num_imgs_in_batch x nq x dim, 4 x 64 x 4096 if self.add_patch_pos and patch_positions is not None: # assert patch_positions is not None patch_positions = patch_positions.to( image_embeds_lm ) rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1) image_embeds_lm = image_embeds_lm + rel_pos_embed has_image_cmp = True else: image_embeds_cmp_fake = torch.randn( 1 , self.output_resampler.num_queries, self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) # image_embeds = torch.randn(bz, self.output_resampler.num_queries, # self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) image_embeds_lm = self.input_resampler(image_embeds_cmp_fake) if self.add_patch_pos: rel_pos_embed = self.patch_pos_embed.mean(0, keepdim=True).unsqueeze(1) # 1, 1, dim image_embeds_lm = image_embeds_lm + rel_pos_embed has_image_cmp = False has_image_input = image_embeds is not None and embeds_cmp_mask.sum().item() > 0 has_image_output = image_embeds is not None and embeds_gen_mask.sum().item() > 0 if has_image_input: input_embeds[ids_cmp_mask] = image_embeds_lm.reshape(-1, dim) # eg, 128 x 4096 # zero_loss = 0.0 else: input_embeds[:1, :self.input_resampler.num_queries, :] += 0.0 * image_embeds_lm[:1, :, :] output_lm = self.llm(attention_mask=attention_mask, inputs_embeds=input_embeds, labels=labels, output_hidden_states=True, return_dict=True) lm_loss = output_lm['loss'] last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096 if has_image_output: target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096 if self.vit_down: target_embeds = target_embeds.permute(0, 2, 1) # NLD -> NDL target_embeds = F.avg_pool1d(target_embeds, kernel_size=self.pool_size, stride=self.stride) target_embeds = target_embeds.permute(0, 2, 1) num_imgs_for_rec = target_embeds.shape[0] output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1, dim) # 128 x 4096 -> 2 x 64 x 4096 recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096 if self.mse: # rec_loss = self.mse_loss(recon_image_embeds, target_embeds.detach()) rec_loss = F.mse_loss(recon_image_embeds, target_embeds.detach()) # for zero3 compatibility else: rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach()) else: output_image_embeds = torch.randn(1, self.input_resampler.num_queries, self.input_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) + 0.0 * last_hidden_state[0, :self.input_resampler.num_queries, :] recon_image_embeds = self.output_resampler(output_image_embeds) # target_embeds = torch.randn(1, self.output_resampler.num_queries, # self.output_resampler.embed_dim).to(input_embeds.device, dtype=input_embeds.dtype) # rec_loss = cosine_loss(recon_image_embeds, target_embeds.detach) * 0.0 rec_loss = 0.0 * recon_image_embeds.sum() total_loss = self.lm_loss_scale * lm_loss + self.rec_loss_scale * rec_loss return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss} def generate(self, tokenizer, prompt=None, input_ids=None, image_embeds=None, embeds_cmp_mask=None, ids_cmp_mask=None, logits_processor=None, num_img_gen_tokens=64, temperature=0.7, num_beams=1, max_new_tokens=120, top_p=0.5, dtype=torch.float16, device='cuda', patch_positions=None): if logits_processor is None: logits_processor = LogitsProcessorList() logits_processor.append( AutoImageTokenGenerationProcessor(tokenizer=tokenizer, num_img_gen_tokens=num_img_gen_tokens)) if prompt is not None: input_ids = tokenizer(prompt, return_tensors="pt").input_ids if isinstance(input_ids, list): input_ids = torch.tensor(input_ids) input_ids = input_ids.to(device=device) input_embeds = self.llm.get_input_embeddings()(input_ids) bz, sq, dim = input_embeds.shape if image_embeds is not None: assert embeds_cmp_mask is not None and ids_cmp_mask is not None with torch.no_grad(): image_embeds_lm = self.input_resampler(image_embeds) if self.add_patch_pos: assert patch_positions is not None patch_positions = patch_positions.to( image_embeds_lm ) rel_pos_embed = torch.mm(torch.cat([patch_positions, 1-patch_positions], dim=-1)/2, self.patch_pos_embed).unsqueeze(1) image_embeds_lm = image_embeds_lm + rel_pos_embed #print(input_embeds.shape, ids_cmp_mask.shape, image_embeds_lm.shape, embeds_cmp_mask.shape) input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim) generation_config = { 'temperature': temperature, 'num_beams': num_beams, 'max_new_tokens': max_new_tokens, 'top_p': top_p, 'do_sample': False } # generate_ids = self.llm.generate(input_ids=input_ids, **generation_config) output = self.llm.generate(input_ids=input_ids, inputs_embeds=input_embeds, output_hidden_states=True, return_dict_in_generate=True, logits_processor=logits_processor, **generation_config) generate_ids = output.sequences[0][input_ids.shape[1]:] generate_id_list = generate_ids.tolist() boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0] eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0] last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states], dim=1)[0, input_ids.shape[1]:, :] eoi_indices = torch.where(generate_ids == eoi_token_id)[0].tolist() num_gen_imgs = len(eoi_indices) text_mask = torch.ones_like(generate_ids, dtype=torch.bool) has_img_output = num_gen_imgs > 0 if has_img_output: img_gen_feats = [] for eoi_idx in eoi_indices: img_gen_feats.append(last_hidden_states[eoi_idx - num_img_gen_tokens:eoi_idx]) text_mask[eoi_idx - num_img_gen_tokens:eoi_idx] = False img_gen_feats = torch.stack(img_gen_feats) img_gen_feat = self.output_resampler(img_gen_feats) else: img_gen_feat = None text_mask[generate_ids == boi_token_id] = False generate_ids = generate_ids[text_mask] generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False) return { 'text': generate_text, 'has_img_output': has_img_output, 'img_gen_feat': img_gen_feat, 'num_gen_imgs': num_gen_imgs } @classmethod def from_pretrained(cls, llm, input_resampler, output_resampler, pretrained_model_path=None, **kwargs): model = cls(llm=llm, input_resampler=input_resampler, output_resampler=output_resampler, **kwargs) if os.environ.get('DEBUG_FLAG', 'False') == 'True': return model if pretrained_model_path is not None: ckpt = torch.load(pretrained_model_path, map_location='cpu') missing, unexpected = model.load_state_dict(ckpt, strict=False) #load_zero3_checkpoint(model, ckpt) return model