File size: 29,093 Bytes
da92625
979b424
da92625
 
 
 
 
 
 
 
 
 
 
606c189
 
da96aa6
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb3ae7
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7f3c1
da92625
 
 
8d7f3c1
da92625
 
 
a6bb893
 
 
 
 
 
69f5df3
979b424
12e16dd
550d12e
 
da92625
a4bf183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664fbb8
da92625
 
 
37b3751
 
606c189
979bed2
29f697b
3d466ff
8ef75a7
92d7d3c
8ef75a7
37b3751
 
2642851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b3751
 
da92625
 
 
606c189
 
3d466ff
 
 
 
 
 
 
b84a05a
 
a40f62f
3d466ff
 
 
 
 
 
 
887dd92
da92625
d36c83d
ee84fd2
d36c83d
 
8ef75a7
9f4c149
3d466ff
713ff3f
d36c83d
 
 
5db0911
 
 
 
 
 
 
92d7d3c
 
5db0911
 
92d7d3c
979bed2
92d7d3c
5db0911
 
 
 
ee84fd2
8ef75a7
606c189
 
9f4c149
 
606c189
 
37b3751
8ef75a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed7fbb
8ef75a7
f99d80b
606c189
 
 
1062c17
606c189
 
 
 
 
 
 
9f4c149
606c189
 
 
 
bed7fbb
8ef75a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37b3751
 
 
 
 
 
 
8ef75a7
37b3751
 
 
 
 
 
 
e19ffb4
8ef75a7
37b3751
 
 
 
 
 
 
8ef75a7
37b3751
 
 
 
 
 
 
e19ffb4
8ef75a7
37b3751
 
 
 
 
 
 
8ef75a7
37b3751
 
 
 
 
 
 
bed7fbb
f99d80b
606c189
9f4c149
 
606c189
9f4c149
 
606c189
 
 
9f4c149
 
 
606c189
9f4c149
606c189
 
 
9f4c149
 
979bed2
606c189
 
 
5f0ee8c
8ef75a7
 
 
 
 
 
 
 
 
 
 
 
 
 
37b3751
 
 
 
 
 
 
8ef75a7
37b3751
 
 
 
 
 
 
5f0ee8c
8ef75a7
37b3751
 
 
 
 
 
 
8ef75a7
37b3751
 
 
 
 
 
 
5f0ee8c
606c189
 
979bed2
 
 
 
606c189
 
 
 
 
 
 
 
979bed2
8ef75a7
 
 
 
 
 
 
 
 
 
 
 
 
979bed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f5cc84
 
887dd92
606c189
979bed2
606c189
 
 
 
 
 
 
 
 
 
979bed2
3d466ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979bed2
3d466ff
979bed2
 
 
 
 
3d466ff
979bed2
 
 
 
8d7f3c1
5f0ee8c
8d7f3c1
5f0ee8c
3d466ff
f99d80b
887dd92
4e841d6
 
 
 
 
 
 
8e21015
7fde741
979bed2
7fde741
9ce778c
4e841d6
 
 
c1e1ef9
4e841d6
887dd92
 
da92625
2a7d8c1
174a614
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174a614
 
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns, SearchColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    SUB_TITLE,
    EXTERNAL_LINKS,
    COMING_SOON_TEXT
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_model_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=None,
        # SelectColumns(
        #     default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
        #     cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
        #     label="Select Columns to Display:",
        # ),
        # search_columns=None,
        # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
                                     placeholder="Search by the model name",
                                     label="Searching"),
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=None,
        # [
        #     ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
        #     ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
        #     ColumnFilter(
        #         AutoEvalColumn.params.name,
        #         type="slider",
        #         min=0.01,
        #         max=150,
        #         label="Select the number of parameters (B)",
        #     ),
        #     ColumnFilter(
        #         AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
        #     ),
        # ],
        # bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

# model_result_path = "./src/results/models_2024-10-07-14:50:12.666068.jsonl"
# model_result_path = "./src/results/models_2024-10-08-03:10:26.811832.jsonl"
# model_result_path = "./src/results/models_2024-10-08-03:25:44.801310.jsonl"
# model_result_path = "./src/results/models_2024-10-08-17:39:21.001582.jsonl"
# model_result_path = "./src/results/models_2024-10-09-05:17:38.810960.json"
# model_result_path = "./src/results/models_2024-10-09-06:22:21.122422.json"
# model_result_path = "./src/results/models_2024-10-10-06:18:54.263527.json"
# model_result_path = "./src/results/models_2024-10-18-14:06:13.588399.json"
model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)


def overall_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=None,
        search_columns=SearchColumns(primary_column=AutoEvalColumn.model.name, secondary_columns=[],
                                     placeholder="Search by the model name",
                                     label="Searching"),
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=None,
        interactive=False,
    )
    


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.HTML(EXTERNAL_LINKS)
    # gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    # gr.HTML('<p style="font-size:15px;">This is a larger text using HTML in Markdown.</p>')
    INTRODUCTION_TEXT_FONT_SIZE = 16
    INTRODUCTION_TEXT = (
        f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
        '<strong>Decentralized Arena</strong> automates,  scales, and accelerates "<a href="https://lmarena.ai/">Chatbot Arena</a>" '
        'for large language model (LLM) evaluation across diverse, fine-grained dimensions, '
        'such as mathematics (algebra, geometry, probability), logical reasoning, social reasoning, science (chemistry, physics, biology), or any user-defined dimensions. '
        'The evaluation is decentralized and democratic, with all participating LLMs assessing each other to ensure unbiased and fair results. '
        'With a 95% correlation to Chatbot Arena\'s overall rankings, the system is fully transparent and reproducible.'
        '</p>'
        f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
        'We actively invite <b>model developers</b> to participate and expedite their benchmarking efforts '
        'and encourage <b>data stakeholders</b> to freely define and evaluate dimensions of interest for their own objectives.'
        '</p>'
    )
    gr.HTML(INTRODUCTION_TEXT)

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        
        with gr.TabItem("๐Ÿ… Overview", elem_id="llm-benchmark-tab-table", id=0):

            DESCRIPTION_TEXT = """
            Total #models: 57 (Last updated: 2024-10-21)
            
            This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks. 
            (Missing values are due to the slow or problemtic model responses to be fixed soom.)
            """
            gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")

            leaderboard = overall_leaderboard(
                get_model_leaderboard_df(
                    model_result_path,
                    benchmark_cols=[
                        # AutoEvalColumn.rank_overall.name,
                        AutoEvalColumn.model.name, 
                        AutoEvalColumn.rank_overall.name,
                        AutoEvalColumn.rank_math_algebra.name,
                        AutoEvalColumn.rank_math_geometry.name,
                        AutoEvalColumn.rank_math_probability.name,
                        AutoEvalColumn.rank_reason_logical.name,
                        AutoEvalColumn.rank_reason_social.name,
                        AutoEvalColumn.rank_chemistry.name,
                        AutoEvalColumn.rank_cpp.name,
                        ],
                    rank_col=[],
                )
            )
            
        with gr.TabItem("๐ŸŽฏ Mixed", elem_id="llm-benchmark-tab-table", id=1):
            DESCRIPTION_TEXT = """
            Overall dimension measures the comprehensive performance of LLMs across diverse tasks. 
            We start with diverse questions from the widely-used [MT-Bench](https://arxiv.org/abs/2306.05685), 
            coving a wide range of domains, including writing, roleplay, extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social science).
            """
            gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")
            
            with gr.TabItem("MT-Bench", elem_id="mt-bench_subtab", id=0, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_overall.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_overall.name,
                            AutoEvalColumn.sd_overall.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_overall.name],
                    ))
            

        with gr.TabItem("๐Ÿ”ข Math", elem_id="math-tab-table", id=2):
            DESCRIPTION_TEXT="""
            Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. 
            To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources.
            We prioritize **recent math datasets** and focus on **college and beyond level** math questions. 
            The current datasets include
            [MATH](https://arxiv.org/abs/2103.03874), 
            [MATH-500](https://github.com/openai/prm800k/tree/main/prm800k/math_splits), 
            [Omni](https://omni-math.github.io/), 
            [MathQA](https://arxiv.org/abs/1905.13319), 
            [MathBench](https://arxiv.org/abs/2405.12209), 
            [SciBench](https://arxiv.org/abs/2307.10635), and more!
            
            We plan to include more math domains, such as calculus, number theory, and more in the future.
            """
            gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")

            # leaderboard = init_leaderboard(LEADERBOARD_DF)
            with gr.TabItem("Overall", elem_id="math_overall_subtab", id=0, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.rank_math_algebra.name,
                            AutoEvalColumn.rank_math_geometry.name,
                            AutoEvalColumn.rank_math_probability.name,
                            ],
                        rank_col=[],
                    )
                )


            with gr.TabItem("๐Ÿงฎ Algebra", elem_id="algebra_subtab", id=1, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_math_algebra.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_math_algebra.name,
                            # AutoEvalColumn.sd_math_algebra.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_math_algebra.name],
                    )
                )
                
            with gr.TabItem("๐Ÿ“ Geometry", elem_id="geometry_subtab", id=2, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_math_geometry.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_math_geometry.name,
                            # AutoEvalColumn.sd_math_geometry.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_math_geometry.name],
                    )
                )

            with gr.TabItem("๐Ÿ“Š Probability", elem_id="prob_subtab", id=3, elem_classes="subtab"):
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_math_probability.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_math_probability.name,
                            # AutoEvalColumn.sd_math_probability.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_math_probability.name],
                    )
                )
                
        with gr.TabItem("๐Ÿง  Reasoning", elem_id="reasonong-tab-table", id=3):
            DESCRIPTION_TEXT = """
            Reasoning is a broad domain for evaluating LLMs, but traditional tasks like commonsense reasoning have become less effective in differentiating modern LLMs. 
            We now present two challenging types of reasoning: logical reasoning and social reasoning, both of which present more meaningful and sophisticated ways to assess LLM performance.
            
            For logical reasoning, we leverage datasets from sources such as
            [BIG-Bench Hard (BBH)](https://arxiv.org/abs/2210.09261),
            [FOLIO](https://arxiv.org/abs/2209.00840),
            [LogiQA2.0](https://github.com/csitfun/LogiQA2.0),
            [PrOntoQA](https://arxiv.org/abs/2210.01240),
            [ReClor](https://arxiv.org/abs/2002.04326), 
            These cover a range of tasks including deductive reasoning, object counting and tracking, pattern recognition, 
            temporal reasoning, first-order logic reaosning, etc.
            For social reasoning, we collect datasets from
            [MMToM-QA (Text-only)](https://arxiv.org/abs/2401.08743),
            [BigToM](https://arxiv.org/abs/2306.15448),
            [Adv-CSFB](https://arxiv.org/abs/2305.14763),
            [SocialIQA](https://arxiv.org/abs/1904.09728),
            [NormBank](https://arxiv.org/abs/2305.17008), covering challenging social reasoning tasks, 
            such as social commonsense reasoning, social normative reasoning, Theory of Mind (ToM) reasoning, etc.
            More fine-grained types of reasoning, such as symbolic, analogical, counterfactual reasoning, are planned to be added in the future.
            
            """
            gr.Markdown(DESCRIPTION_TEXT, elem_classes="markdown-text")

            with gr.TabItem("Overall", elem_id="reasoning_overall_subtab", id=0, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.rank_reason_logical.name,
                            AutoEvalColumn.rank_reason_social.name,
                            ],
                        rank_col=[],
                    )
                )

            with gr.TabItem("๐Ÿงฉ Logical", elem_id="logical_subtab", id=1, elem_classes="subtab"):         
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_reason_logical.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_reason_logical.name,
                            # AutoEvalColumn.sd_reason_logical.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_reason_logical.name],
                    )
                )

            with gr.TabItem("๐Ÿ—ฃ๏ธ Social", elem_id="social_subtab", id=2, elem_classes="subtab"):         
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_reason_social.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_reason_social.name,
                            # AutoEvalColumn.sd_reason_social.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_reason_social.name],
                    )
                )

        with gr.TabItem("๐Ÿ”ฌ Science", elem_id="science-table", id=4):
            CURRENT_TEXT = """
            Scientific tasks are crucial for evaluating LLMs, requiring both domain-specific knowledge and reasoning capabilities.
            
            We are adding several fine-grained scientific domains to the leaderboard. The forthcoming ones are biology, chemistry, and physics. 
            We have diversely and aggressively collected recent scientific datasets, including but not limited to
            [GPQA](https://arxiv.org/abs/2311.12022),
            [JEEBench](https://aclanthology.org/2023.emnlp-main.468/),
            [MMLU-Pro](https://arxiv.org/abs/2406.01574),
            [OlympiadBench](https://arxiv.org/abs/2402.14008),
            [SciBench](https://arxiv.org/abs/2307.10635),
            [SciEval](https://arxiv.org/abs/2308.13149).
            """
            gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
            
            with gr.TabItem("Overall", elem_id="science_overall_subtab", id=0, elem_classes="subtab"): 
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.rank_chemistry.name,
                            ],
                        rank_col=[],
                    )
                )

            with gr.TabItem("๐Ÿงช Chemistry", elem_id="chemistry_subtab", id=1, elem_classes="subtab"):         
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_chemistry.name,
                            AutoEvalColumn.model.name, 
                            AutoEvalColumn.score_chemistry.name,
                            # AutoEvalColumn.sd_reason_social.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_chemistry.name],
                    )
                )

            with gr.TabItem("โš›๏ธ Physics", elem_id="physics_subtab", id=1, elem_classes="subtab"):   
                CURRENT_TEXT = """
                # Coming soon!
                """
                gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")


            with gr.TabItem("๐Ÿงฌ Biology", elem_id="biology_subtab", id=2, elem_classes="subtab"):   
                CURRENT_TEXT = """
                # Coming soon!
                """
                gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")


        with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
            CURRENT_TEXT = """
            We are working on adding more fine-grained tasks in coding domains to the leaderboard. 
            The forthcoming ones focus on Python, Java, and C++, with plans to expand to more languages. 
            We collect a variety of recent coding datasets, including 
            [HumanEval](https://huggingface.co/datasets/openai/openai_humaneval), 
            [MBPP](https://huggingface.co/datasets/google-research-datasets/mbpp), 
            [HumanEvalFix](https://huggingface.co/datasets/bigcode/humanevalpack), 
            [newly crawled LeetCode data](https://leetcode.com/problemset/), 
            filtered code-related queries from [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) and more!
            Our efforts also include synthesizing new code-related queries to ensure diversity!
            """
            gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
            
            with gr.TabItem("โž• C++", elem_id="cpp_subtab", id=0, elem_classes="subtab"):   
                                
                leaderboard = overall_leaderboard(
                    get_model_leaderboard_df(
                        model_result_path,
                        benchmark_cols=[
                            AutoEvalColumn.rank_cpp.name,
                            AutoEvalColumn.model.name,
                            AutoEvalColumn.score_cpp.name,
                            # AutoEvalColumn.sd_cpp.name,
                            AutoEvalColumn.license.name,
                            AutoEvalColumn.organization.name,
                            AutoEvalColumn.knowledge_cutoff.name,
                            ],
                        rank_col=[AutoEvalColumn.rank_cpp.name],
                    )
                )

            with gr.TabItem("๐Ÿ Python", elem_id="python_subtab", id=1, elem_classes="subtab"):   
                CURRENT_TEXT = """
                # Coming soon!
                """
                gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")

            with gr.TabItem("โ˜• Java", elem_id="java_subtab", id=2, elem_classes="subtab"):   
                CURRENT_TEXT = """
                # Coming soon!
                """
                gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")





        with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=6):
            ABOUT_TEXT = """
            # About Us
            
            [Decentralized Arena](https://de-arena.maitrix.org/) is an open-source project that automates and scales the evaluation of large language models (LLMs) across various fine-grained dimensions,
            developed by reseachers from UCSD, CMU, MBZUAI, [Maitrix.org](https://maitrix.org/) and [LLM360](https://www.llm360.ai/). 
            
            Stay tuned for more updates and new features!
            
            ## Team members
            Yanbin Yin, [Zhen Wang](https://zhenwang9102.github.io/), [Kun Zhou](https://lancelot39.github.io/), Xiangdong Zhang,
            [Shibo Hao](https://ber666.github.io/), [Yi Gu](https://www.yigu.page/), [Jieyuan Liu](https://www.linkedin.com/in/jieyuan-liu/), [Somanshu Singla](https://www.linkedin.com/in/somanshu-singla-105636214/), [Tianyang Liu](https://leolty.github.io/),
            [Eric P. Xing](https://www.cs.cmu.edu/~epxing/), [Zhengzhong Liu](https://hunterhector.github.io/), [Haojian Jin](https://www.haojianj.in/),
            [Zhiting Hu](https://zhiting.ucsd.edu/)
            
            ## Contact Us
            - Follow us on X, [Maitrix.org](https://twitter.com/MaitrixOrg) and [LLM360](https://twitter.com/llm360)
            - Email us at [Zhen Wang](mailto:zhenwang9102@gmail.com), [Kun Zhou](mailto:franciskunzhou@gmail.com) and [Zhiting Hu](mailto:zhitinghu@gmail.com)
            
            """
            gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")


        '''
        with gr.TabItem("๐Ÿš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"โœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"๐Ÿ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# โœ‰๏ธโœจ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )
        '''
        
    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()