Spaces:
Paused
Paused
File size: 1,681 Bytes
70546b5 6b6c817 70546b5 6b6c817 70546b5 6b6c817 70546b5 e38f741 6b6c817 70546b5 6b6c817 70546b5 6b6c817 70546b5 6b6c817 70546b5 6b6c817 70546b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
from diffusers.utils import load_image
import torch
# Clear CUDA cache
torch.cuda.empty_cache()
# Set environment variable for memory fragmentation
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
device = "cuda" if torch.cuda.is_available() else "cpu"
pipes = {
"txt2img": AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to(device),
"img2img": AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to(device)
}
if device == "cpu":
pipes["txt2img"].enable_model_cpu_offload()
pipes["img2img"].enable_model_cpu_offload()
def run(prompt, image):
try:
print(f"prompt={prompt}, image={image}")
if image is None:
return pipes["txt2img"](prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
else:
image = image.resize((512,512))
print(f"img2img image={image}")
return pipes["img2img"](prompt, image=image, num_inference_steps=2, strength=0.5, guidance_scale=0.0).images[0]
except RuntimeError as e:
if "CUDA out of memory" in str(e):
print("CUDA out of memory. Trying to clear cache.")
torch.cuda.empty_cache()
# Consider additional fallback strategies here
else:
raise e
demo = gr.Interface(
run,
inputs=[
gr.Textbox(label="Prompt"),
gr.Image(type="pil")
],
outputs=gr.Image(width=512, height=512),
live=True
)
demo.launch()
|