File size: 12,367 Bytes
ad06aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import pytorch_lightning as pl
from einops import rearrange, repeat

from src.utils.train_util import instantiate_from_config


class MVRecon(pl.LightningModule):
    def __init__(
        self,
        lrm_generator_config,
        lrm_path=None,
        input_size=256,
        render_size=192,
    ):
        super(MVRecon, self).__init__()

        self.input_size = input_size
        self.render_size = render_size

        # init modules
        self.lrm_generator = instantiate_from_config(lrm_generator_config)
        if lrm_path is not None:
            lrm_ckpt = torch.load(lrm_path)
            self.lrm_generator.load_state_dict(lrm_ckpt['weights'], strict=False)

        self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')
        
        self.validation_step_outputs = []
    
    def on_fit_start(self):
        if self.global_rank == 0:
            os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
            os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
    
    def prepare_batch_data(self, batch):
        lrm_generator_input = {}
        render_gt = {}   # for supervision

        # input images
        images = batch['input_images']
        images = v2.functional.resize(
            images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)

        lrm_generator_input['images'] = images.to(self.device)

        # input cameras and render cameras
        input_c2ws = batch['input_c2ws'].flatten(-2)
        input_Ks = batch['input_Ks'].flatten(-2)
        target_c2ws = batch['target_c2ws'].flatten(-2)
        target_Ks = batch['target_Ks'].flatten(-2)
        render_cameras_input = torch.cat([input_c2ws, input_Ks], dim=-1)
        render_cameras_target = torch.cat([target_c2ws, target_Ks], dim=-1)
        render_cameras = torch.cat([render_cameras_input, render_cameras_target], dim=1)

        input_extrinsics = input_c2ws[:, :, :12]
        input_intrinsics = torch.stack([
            input_Ks[:, :, 0], input_Ks[:, :, 4], 
            input_Ks[:, :, 2], input_Ks[:, :, 5],
        ], dim=-1)
        cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)

        # add noise to input cameras
        cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02

        lrm_generator_input['cameras'] = cameras.to(self.device)
        lrm_generator_input['render_cameras'] = render_cameras.to(self.device)

        # target images
        target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
        target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
        target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)

        # random crop
        render_size = np.random.randint(self.render_size, 513)
        target_images = v2.functional.resize(
            target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
        target_depths = v2.functional.resize(
            target_depths, render_size, interpolation=0, antialias=True)
        target_alphas = v2.functional.resize(
            target_alphas, render_size, interpolation=0, antialias=True)

        crop_params = v2.RandomCrop.get_params(
            target_images, output_size=(self.render_size, self.render_size))
        target_images = v2.functional.crop(target_images, *crop_params)
        target_depths = v2.functional.crop(target_depths, *crop_params)[:, :, 0:1]
        target_alphas = v2.functional.crop(target_alphas, *crop_params)[:, :, 0:1]

        lrm_generator_input['render_size'] = render_size
        lrm_generator_input['crop_params'] = crop_params

        render_gt['target_images'] = target_images.to(self.device)
        render_gt['target_depths'] = target_depths.to(self.device)
        render_gt['target_alphas'] = target_alphas.to(self.device)

        return lrm_generator_input, render_gt
    
    def prepare_validation_batch_data(self, batch):
        lrm_generator_input = {}

        # input images
        images = batch['input_images']
        images = v2.functional.resize(
            images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)

        lrm_generator_input['images'] = images.to(self.device)

        input_c2ws = batch['input_c2ws'].flatten(-2)
        input_Ks = batch['input_Ks'].flatten(-2)

        input_extrinsics = input_c2ws[:, :, :12]
        input_intrinsics = torch.stack([
            input_Ks[:, :, 0], input_Ks[:, :, 4], 
            input_Ks[:, :, 2], input_Ks[:, :, 5],
        ], dim=-1)
        cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)

        lrm_generator_input['cameras'] = cameras.to(self.device)

        render_c2ws = batch['render_c2ws'].flatten(-2)
        render_Ks = batch['render_Ks'].flatten(-2)
        render_cameras = torch.cat([render_c2ws, render_Ks], dim=-1)

        lrm_generator_input['render_cameras'] = render_cameras.to(self.device)
        lrm_generator_input['render_size'] = 384
        lrm_generator_input['crop_params'] = None

        return lrm_generator_input
    
    def forward_lrm_generator(
        self, 
        images, 
        cameras, 
        render_cameras, 
        render_size=192, 
        crop_params=None, 
        chunk_size=1,
    ):
        planes = torch.utils.checkpoint.checkpoint(
            self.lrm_generator.forward_planes, 
            images, 
            cameras, 
            use_reentrant=False,
        )
        frames = []
        for i in range(0, render_cameras.shape[1], chunk_size):
            frames.append(
                torch.utils.checkpoint.checkpoint(
                    self.lrm_generator.synthesizer,
                    planes,
                    cameras=render_cameras[:, i:i+chunk_size],
                    render_size=render_size, 
                    crop_params=crop_params,
                    use_reentrant=False
                )
            )
        frames = {
            k: torch.cat([r[k] for r in frames], dim=1)
            for k in frames[0].keys()
        }
        return frames
    
    def forward(self, lrm_generator_input):
        images = lrm_generator_input['images']
        cameras = lrm_generator_input['cameras']
        render_cameras = lrm_generator_input['render_cameras']
        render_size = lrm_generator_input['render_size']
        crop_params = lrm_generator_input['crop_params']

        out = self.forward_lrm_generator(
            images, 
            cameras, 
            render_cameras, 
            render_size=render_size, 
            crop_params=crop_params, 
            chunk_size=1,
        )
        render_images = torch.clamp(out['images_rgb'], 0.0, 1.0)
        render_depths = out['images_depth']
        render_alphas = torch.clamp(out['images_weight'], 0.0, 1.0)

        out = {
            'render_images': render_images,
            'render_depths': render_depths,
            'render_alphas': render_alphas,
        }
        return out

    def training_step(self, batch, batch_idx):
        lrm_generator_input, render_gt = self.prepare_batch_data(batch)

        render_out = self.forward(lrm_generator_input)

        loss, loss_dict = self.compute_loss(render_out, render_gt)

        self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)

        if self.global_step % 1000 == 0 and self.global_rank == 0:
            B, N, C, H, W = render_gt['target_images'].shape
            N_in = lrm_generator_input['images'].shape[1]

            input_images = v2.functional.resize(
                lrm_generator_input['images'], (H, W), interpolation=3, antialias=True).clamp(0, 1)
            input_images = torch.cat(
                [input_images, torch.ones(B, N-N_in, C, H, W).to(input_images)], dim=1)

            input_images = rearrange(
                input_images, 'b n c h w -> b c h (n w)')
            target_images = rearrange(
                render_gt['target_images'], 'b n c h w -> b c h (n w)')
            render_images = rearrange(
                render_out['render_images'], 'b n c h w -> b c h (n w)')
            target_alphas = rearrange(
                repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
            render_alphas = rearrange(
                repeat(render_out['render_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
            target_depths = rearrange(
                repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
            render_depths = rearrange(
                repeat(render_out['render_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
            MAX_DEPTH = torch.max(target_depths)
            target_depths = target_depths / MAX_DEPTH * target_alphas
            render_depths = render_depths / MAX_DEPTH

            grid = torch.cat([
                input_images, 
                target_images, render_images, 
                target_alphas, render_alphas, 
                target_depths, render_depths,
            ], dim=-2)
            grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))

            save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png'))

        return loss
    
    def compute_loss(self, render_out, render_gt):
        # NOTE: the rgb value range of OpenLRM is [0, 1]
        render_images = render_out['render_images']
        target_images = render_gt['target_images'].to(render_images)
        render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
        target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0

        loss_mse = F.mse_loss(render_images, target_images)
        loss_lpips = 2.0 * self.lpips(render_images, target_images)

        render_alphas = render_out['render_alphas']
        target_alphas = render_gt['target_alphas']
        loss_mask = F.mse_loss(render_alphas, target_alphas)

        loss = loss_mse + loss_lpips + loss_mask

        prefix = 'train'
        loss_dict = {}
        loss_dict.update({f'{prefix}/loss_mse': loss_mse})
        loss_dict.update({f'{prefix}/loss_lpips': loss_lpips})
        loss_dict.update({f'{prefix}/loss_mask': loss_mask})
        loss_dict.update({f'{prefix}/loss': loss})

        return loss, loss_dict

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        lrm_generator_input = self.prepare_validation_batch_data(batch)

        render_out = self.forward(lrm_generator_input)
        render_images = render_out['render_images']
        render_images = rearrange(render_images, 'b n c h w -> b c h (n w)')

        self.validation_step_outputs.append(render_images)
    
    def on_validation_epoch_end(self):
        images = torch.cat(self.validation_step_outputs, dim=-1)

        all_images = self.all_gather(images)
        all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')

        if self.global_rank == 0:
            image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')

            grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))
            save_image(grid, image_path)
            print(f"Saved image to {image_path}")

        self.validation_step_outputs.clear()

    def configure_optimizers(self):
        lr = self.learning_rate

        params = []

        lrm_params_fast, lrm_params_slow = [], []
        for n, p in self.lrm_generator.named_parameters():
            if 'adaLN_modulation' in n or 'camera_embedder' in n:
                lrm_params_fast.append(p)
            else:
                lrm_params_slow.append(p)
        params.append({"params": lrm_params_fast, "lr": lr, "weight_decay": 0.01 })
        params.append({"params": lrm_params_slow, "lr": lr / 10.0, "weight_decay": 0.01 })

        optimizer = torch.optim.AdamW(params, lr=lr, betas=(0.90, 0.95))
        scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4)

        return {'optimizer': optimizer, 'lr_scheduler': scheduler}