File size: 3,017 Bytes
4d9fdb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import os
import pickle
from argparse import Namespace
import torchvision
import torch
import sys
import time
from configs import paths_config, global_config
from models.StyleCLIP.mapper.styleclip_mapper import StyleCLIPMapper
from utils.models_utils import load_tuned_G, load_old_G
sys.path.append(".")
sys.path.append("..")
def run(test_opts, model_id, image_name, use_multi_id_G):
out_path_results = os.path.join(test_opts.exp_dir, test_opts.data_dir_name)
os.makedirs(out_path_results, exist_ok=True)
out_path_results = os.path.join(out_path_results, test_opts.image_name)
os.makedirs(out_path_results, exist_ok=True)
# update test configs with configs used during training
ckpt = torch.load(test_opts.checkpoint_path, map_location='cpu')
opts = ckpt['opts']
opts.update(vars(test_opts))
opts = Namespace(**opts)
net = StyleCLIPMapper(opts, test_opts.run_id)
net.eval()
net.to(global_config.device)
generator_type = paths_config.multi_id_model_type if use_multi_id_G else image_name
new_G = load_tuned_G(model_id, generator_type)
old_G = load_old_G()
run_styleclip(net, new_G, opts, paths_config.pti_results_keyword, out_path_results, test_opts)
run_styleclip(net, old_G, opts, paths_config.e4e_results_keyword, out_path_results, test_opts)
def run_styleclip(net, G, opts, method, out_path_results, test_opts):
net.set_G(G)
out_path_results = os.path.join(out_path_results, method)
os.makedirs(out_path_results, exist_ok=True)
latent = torch.load(opts.latents_test_path)
global_i = 0
global_time = []
with torch.no_grad():
input_cuda = latent.cuda().float()
tic = time.time()
result_batch = run_on_batch(input_cuda, net, test_opts.couple_outputs)
toc = time.time()
global_time.append(toc - tic)
for i in range(opts.test_batch_size):
im_path = f'{test_opts.image_name}_{test_opts.edit_name}'
if test_opts.couple_outputs:
couple_output = torch.cat([result_batch[2][i].unsqueeze(0), result_batch[0][i].unsqueeze(0)])
torchvision.utils.save_image(couple_output, os.path.join(out_path_results, f"{im_path}.jpg"),
normalize=True, range=(-1, 1))
else:
torchvision.utils.save_image(result_batch[0][i], os.path.join(out_path_results, f"{im_path}.jpg"),
normalize=True, range=(-1, 1))
torch.save(result_batch[1][i].detach().cpu(), os.path.join(out_path_results, f"latent_{im_path}.pt"))
def run_on_batch(inputs, net, couple_outputs=False):
w = inputs
with torch.no_grad():
w_hat = w + 0.06 * net.mapper(w)
x_hat = net.decoder.synthesis(w_hat, noise_mode='const', force_fp32=True)
result_batch = (x_hat, w_hat)
if couple_outputs:
x = net.decoder.synthesis(w, noise_mode='const', force_fp32=True)
result_batch = (x_hat, w_hat, x)
return result_batch
|