File size: 13,532 Bytes
de12ca3 969f59e de12ca3 969f59e de12ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
"""
NOTE: pip install optuna
"""
import dataclasses
import json
import shutil
import tempfile
from pathlib import Path
from typing import Any, Dict, Optional
import jax
import numpy as np
import optuna
import tyro
import yaml
import zea
from keras import ops
from PIL import Image
from zea import init_device, log
from eval import evaluate
from main import init, run
from utils import load_image
def load_images_from_dir(input_folder):
"""Load images from directory, similar to main.py implementation."""
paths = list(Path(input_folder).glob("*.png"))
images = []
for path in paths:
image = load_image(path)
images.append(image)
if len(images) == 0:
raise ValueError(f"No PNG images found in {input_folder}")
images = ops.stack(images, axis=0)
return images, paths
def save_images_to_temp_dir(images, image_paths, prefix=""):
"""Save numpy arrays as PNG images to a temporary directory."""
temp_dir = tempfile.mkdtemp(prefix=prefix)
temp_dir_path = Path(temp_dir)
for i, (img, path) in enumerate(zip(images, image_paths)):
# Get the filename from the original path
filename = Path(path).name
# Convert image to uint8 if needed
if img.dtype != np.uint8:
# Assume image is in [0, 1] range and convert to [0, 255]
if img.max() <= 1.0:
img = (img * 255).astype(np.uint8)
else:
img = img.astype(np.uint8)
# Ensure image is 2D or 3D
if len(img.shape) == 3 and img.shape[-1] == 1:
img = img.squeeze(-1)
# Save as PNG
img_pil = Image.fromarray(img)
save_path = temp_dir_path / filename
img_pil.save(save_path)
return str(temp_dir_path)
@dataclasses.dataclass
class SweeperConfig:
"""Configuration for hyperparameter sweeping with Optuna."""
# Required paths - no defaults
input_image_dir: str # Path to input hazy images
roi_folder: str # Path to ROI mask images
reference_folder: str # Path to reference/ground truth images
base_config_path: str = "configs/semantic_dps.yaml"
# Base configuration
method: str = "semantic_dps" # Which method to optimize
broad_sweep: bool = False # Choose between broad or narrow sweep
# Optuna settings
study_name: str = "dehaze_optimization"
storage: Optional[str] = None # e.g., "sqlite:///dehaze_study.db" for persistence
n_trials: int = 100
# Optimization settings
objective_metric: str = "final_score" # Which metric to optimize
direction: str = "maximize" # "maximize" or "minimize"
# Output settings
output_dir: str = "sweep_results"
# Evaluation settings
skip_fid: bool = False
# Device configuration
device: str = "auto:1"
# Pruning settings
enable_pruning: bool = True
pruner_type: str = "median" # "median", "hyperband", or "none"
class OptunaObjective:
"""Optuna objective function for hyperparameter optimization."""
def __init__(self, config: SweeperConfig):
self.config = config
self.base_config = self._load_base_config()
self.hazy_images, self.image_paths = load_images_from_dir(
config.input_image_dir
)
# Initialize device
init_device(config.device)
# Initialize the diffusion model once
self.diffusion_model = init(self.base_config)
def _load_base_config(self):
"""Load base configuration from YAML file."""
with open(self.config.base_config_path, "r") as f:
config_dict = yaml.safe_load(f)
return zea.Config(**config_dict)
def _create_trial_params(self, trial: optuna.Trial) -> Dict[str, Any]:
"""Create trial parameters by suggesting hyperparameters."""
params = {
"guidance_kwargs": {
"omega": trial.suggest_float("omega", 0.5, 50.0, log=True),
"omega_vent": trial.suggest_float("omega_vent", 0.0001, 50.0, log=True),
"omega_sept": trial.suggest_float("omega_sept", 0.1, 50.0, log=True),
"eta": trial.suggest_float("eta", 0.001, 1.0, log=True),
"smooth_l1_beta": trial.suggest_float(
"smooth_l1_beta", 0.1, 10.0, log=True
),
},
"skeleton_params": {
"sigma_pre": trial.suggest_float("skeleton_sigma_pre", 0.0, 10.0),
"sigma_post": trial.suggest_float("skeleton_sigma_post", 0.0, 10.0),
"threshold": trial.suggest_float("skeleton_threshold", 0.0, 1.0),
},
"mask_params": {
"threshold": trial.suggest_float("mask_threshold", 0.0, 1.0),
"sigma": trial.suggest_float("mask_sigma", 0.0, 10.0),
},
}
# Add base config parameters that aren't being optimized
if hasattr(self.base_config, "params"):
base_params = self.base_config.params
for key, value in base_params.items():
if key not in params:
params[key] = value
return params
def __call__(self, trial: optuna.Trial) -> float:
"""Optuna objective function."""
# Suggest hyperparameters for this trial
params = self._create_trial_params(trial)
# Create seed for reproducibility
seed = jax.random.PRNGKey(self.base_config.seed + trial.number)
# Run the semantic DPS method
try:
hazy_images, pred_tissue_images, pred_haze_images, masks = run(
hazy_images=self.hazy_images,
diffusion_model=self.diffusion_model,
seed=seed,
**params,
)
except Exception as e:
log.error(f"Error during model inference: {e}")
return 0.0
# Convert tensors to numpy arrays if needed
if hasattr(pred_tissue_images, "numpy"):
pred_tissue_images = pred_tissue_images.numpy()
# Initialize temp directory
pred_tissue_temp_dir = None
try:
# Save predicted tissue images to temp directory
pred_tissue_temp_dir = save_images_to_temp_dir(
pred_tissue_images, self.image_paths, prefix="pred_tissue_"
)
# Run evaluation using the updated evaluate function
results = evaluate(
folder=pred_tissue_temp_dir,
noisy_folder=self.config.input_image_dir,
roi_folder=self.config.roi_folder,
reference_folder=self.config.reference_folder,
)
objective_value = results[self.config.objective_metric]
except Exception as e:
log.error(f"Error during evaluation: {e}")
objective_value = 0.0
finally:
# Clean up temporary directory
if pred_tissue_temp_dir and Path(pred_tissue_temp_dir).exists():
try:
shutil.rmtree(pred_tissue_temp_dir)
except Exception as e:
log.warning(
f"Failed to clean up temp directory {pred_tissue_temp_dir}: {e}"
)
# Log intermediate results for potential pruning
trial.report(objective_value, step=0)
# Check if trial should be pruned
if trial.should_prune():
raise optuna.TrialPruned()
# Store hyperparameters as user attributes
for key, value in params.items():
if isinstance(value, dict):
for subkey, subvalue in value.items():
trial.set_user_attr(f"{key}_{subkey}", subvalue)
else:
trial.set_user_attr(key, value)
log.info(
f"Trial {trial.number}: {self.config.objective_metric} = {objective_value:.4f}"
)
return objective_value
def create_pruner(pruner_type: str) -> optuna.pruners.BasePruner:
"""Create an Optuna pruner based on the specified type."""
if pruner_type == "median":
return optuna.pruners.MedianPruner(
n_startup_trials=5, n_warmup_steps=0, interval_steps=1
)
elif pruner_type == "hyperband":
return optuna.pruners.HyperbandPruner(
min_resource=1, max_resource=100, reduction_factor=3
)
else:
return optuna.pruners.NopPruner()
def run_optimization(config: SweeperConfig):
"""Run hyperparameter optimization using Optuna."""
# Create pruner
pruner = create_pruner(config.pruner_type) if config.enable_pruning else None
# Create or load study
study = optuna.create_study(
study_name=config.study_name,
storage=config.storage,
direction=config.direction,
pruner=pruner,
load_if_exists=True,
)
log.info(f"Starting optimization for method: {config.method}")
log.info(f"Study name: {config.study_name}")
log.info(f"Number of trials: {config.n_trials}")
log.info(f"Objective metric: {config.objective_metric} ({config.direction})")
# Create objective function
objective = OptunaObjective(config)
# Run optimization
study.optimize(objective, n_trials=config.n_trials)
# Save results
output_dir = Path(config.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Save best trial info
best_trial = study.best_trial
best_results = {
"best_value": best_trial.value,
"best_params": best_trial.params,
"best_user_attrs": best_trial.user_attrs,
"study_stats": {
"n_trials": len(study.trials),
"n_complete_trials": len(
[t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
),
"n_pruned_trials": len(
[t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
),
"n_failed_trials": len(
[t for t in study.trials if t.state == optuna.trial.TrialState.FAIL]
),
},
}
with open(
output_dir / f"best_results_{config.method}_{config.study_name}.json", "w"
) as f:
json.dump(best_results, f, indent=2)
# Save all trials data
trials_data = []
for trial in study.trials:
trial_data = {
"number": trial.number,
"value": trial.value,
"params": trial.params,
"user_attrs": trial.user_attrs,
"state": trial.state.name,
"datetime_start": trial.datetime_start.isoformat()
if trial.datetime_start
else None,
"datetime_complete": trial.datetime_complete.isoformat()
if trial.datetime_complete
else None,
}
trials_data.append(trial_data)
with open(
output_dir / f"all_trials_{config.method}_{config.study_name}.json", "w"
) as f:
json.dump(trials_data, f, indent=2)
# Print summary
log.success("Optimization completed!")
log.info(f"Best {config.objective_metric}: {best_trial.value:.4f}")
log.info("Best parameters:")
for key, value in best_trial.params.items():
log.info(f" {key}: {value}")
# Print study statistics
stats = best_results["study_stats"]
log.info("Study statistics:")
log.info(f" Total trials: {stats['n_trials']}")
log.info(f" Complete trials: {stats['n_complete_trials']}")
log.info(f" Pruned trials: {stats['n_pruned_trials']}")
log.info(f" Failed trials: {stats['n_failed_trials']}")
return study
def main():
"""Main function for running hyperparameter optimization."""
config = tyro.cli(SweeperConfig)
# Validate required paths exist
required_paths = [
(config.input_image_dir, "Input image directory"),
(config.roi_folder, "ROI folder"),
(config.reference_folder, "Reference folder"),
]
for path, description in required_paths:
if not Path(path).exists():
raise FileNotFoundError(f"{description} not found: {path}")
# Set visualization style
zea.visualize.set_mpl_style()
# Run optimization
study = run_optimization(config)
# Optionally, generate optimization plots
try:
import matplotlib.pyplot as plt
import optuna.visualization as vis
output_dir = Path(config.output_dir)
# Plot optimization history
fig = vis.matplotlib.plot_optimization_history(study).figure
fig.savefig(
output_dir / f"optimization_history_{config.method}.png",
dpi=300,
bbox_inches="tight",
)
plt.close(fig)
# Plot parameter importances
fig = vis.matplotlib.plot_param_importances(study).figure
fig.savefig(
output_dir / f"param_importances_{config.method}.png",
dpi=300,
bbox_inches="tight",
)
plt.close(fig)
# Plot parallel coordinate
fig = vis.matplotlib.plot_parallel_coordinate(study).figure
fig.savefig(
output_dir / f"parallel_coordinate_{config.method}.png",
dpi=300,
bbox_inches="tight",
)
plt.close(fig)
log.success(f"Optimization plots saved to {output_dir}")
except ImportError:
log.warning(
"Optuna visualization not available. Install with: pip install optuna[visualization]"
)
if __name__ == "__main__":
main()
|