File size: 67,692 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import collections.abc
import copy
import inspect
import json
import multiprocessing
import os
import shutil
import tempfile
import traceback
from pathlib import Path

from check_config_docstrings import get_checkpoint_from_config_class
from datasets import load_dataset
from get_test_info import get_model_to_tester_mapping, get_tester_classes_for_model
from huggingface_hub import Repository, create_repo, hf_api, upload_folder

from transformers import (
    CONFIG_MAPPING,
    FEATURE_EXTRACTOR_MAPPING,
    IMAGE_PROCESSOR_MAPPING,
    PROCESSOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoTokenizer,
    LayoutLMv3TokenizerFast,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    logging,
)
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.file_utils import is_tf_available, is_torch_available
from transformers.image_processing_utils import BaseImageProcessor
from transformers.models.auto.configuration_auto import AutoConfig, model_type_to_module_name
from transformers.models.fsmt import configuration_fsmt
from transformers.processing_utils import ProcessorMixin, transformers_module
from transformers.tokenization_utils_base import PreTrainedTokenizerBase


# make sure tokenizer plays nice with multiprocessing
os.environ["TOKENIZERS_PARALLELISM"] = "false"

logging.set_verbosity_error()
logging.disable_progress_bar()
logger = logging.get_logger(__name__)

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

if not is_torch_available():
    raise ValueError("Please install PyTorch.")

if not is_tf_available():
    raise ValueError("Please install TensorFlow.")


FRAMEWORKS = ["pytorch", "tensorflow"]
INVALID_ARCH = []
TARGET_VOCAB_SIZE = 1024

data = {"training_ds": None, "testing_ds": None}

COMPOSITE_MODELS = {
    "EncoderDecoderModel": "EncoderDecoderModel-bert-bert",
    "SpeechEncoderDecoderModel": "SpeechEncoderDecoderModel-wav2vec2-bert",
    "VisionEncoderDecoderModel": "VisionEncoderDecoderModel-vit-gpt2",
    "VisionTextDualEncoderModel": "VisionTextDualEncoderModel-vit-bert",
}

# This list contains the model architectures for which a tiny version could not be created.
# Avoid to add new architectures here - unless we have verified carefully that it's (almost) impossible to create them.
# One such case is: no model tester class is implemented for a model type (like `MT5`) because its architecture is
# identical to another one (`MT5` is based on `T5`), but trained on different datasets or with different techniques.
UNCONVERTIBLE_MODEL_ARCHITECTURES = {
    "BertGenerationEncoder",
    "BertGenerationDecoder",
    "CamembertForSequenceClassification",
    "CamembertForMultipleChoice",
    "CamembertForMaskedLM",
    "CamembertForCausalLM",
    "CamembertForTokenClassification",
    "CamembertForQuestionAnswering",
    "CamembertModel",
    "TFCamembertForMultipleChoice",
    "TFCamembertForTokenClassification",
    "TFCamembertForQuestionAnswering",
    "TFCamembertForSequenceClassification",
    "TFCamembertForMaskedLM",
    "TFCamembertModel",
    "TFCamembertForCausalLM",
    "DecisionTransformerModel",
    "GraphormerModel",
    "InformerModel",
    "JukeboxModel",
    "MarianForCausalLM",
    "MaskFormerSwinModel",
    "MaskFormerSwinBackbone",
    "MT5Model",
    "MT5ForConditionalGeneration",
    "UMT5ForConditionalGeneration",
    "TFMT5ForConditionalGeneration",
    "TFMT5Model",
    "QDQBertForSequenceClassification",
    "QDQBertForMaskedLM",
    "QDQBertModel",
    "QDQBertForTokenClassification",
    "QDQBertLMHeadModel",
    "QDQBertForMultipleChoice",
    "QDQBertForQuestionAnswering",
    "QDQBertForNextSentencePrediction",
    "ReformerModelWithLMHead",
    "RetriBertModel",
    "Speech2Text2ForCausalLM",
    "TimeSeriesTransformerModel",
    "TrajectoryTransformerModel",
    "TrOCRForCausalLM",
    "XLMProphetNetForConditionalGeneration",
    "XLMProphetNetForCausalLM",
    "XLMProphetNetModel",
    "XLMRobertaModel",
    "XLMRobertaForTokenClassification",
    "XLMRobertaForMultipleChoice",
    "XLMRobertaForMaskedLM",
    "XLMRobertaForCausalLM",
    "XLMRobertaForSequenceClassification",
    "XLMRobertaForQuestionAnswering",
    "TFXLMRobertaForSequenceClassification",
    "TFXLMRobertaForMaskedLM",
    "TFXLMRobertaForCausalLM",
    "TFXLMRobertaForQuestionAnswering",
    "TFXLMRobertaModel",
    "TFXLMRobertaForMultipleChoice",
    "TFXLMRobertaForTokenClassification",
}


def get_processor_types_from_config_class(config_class, allowed_mappings=None):
    """Return a tuple of processors for `config_class`.

    We use `tuple` here to include (potentially) both slow & fast tokenizers.
    """

    # To make a uniform return type
    def _to_tuple(x):
        if not isinstance(x, collections.abc.Sequence):
            x = (x,)
        else:
            x = tuple(x)
        return x

    if allowed_mappings is None:
        allowed_mappings = ["processor", "tokenizer", "image_processor", "feature_extractor"]

    processor_types = ()

    # Check first if a model has `ProcessorMixin`. Otherwise, check if it has tokenizers, and/or an image processor or
    # a feature extractor
    if config_class in PROCESSOR_MAPPING and "processor" in allowed_mappings:
        processor_types = _to_tuple(PROCESSOR_MAPPING[config_class])
    else:
        if config_class in TOKENIZER_MAPPING and "tokenizer" in allowed_mappings:
            processor_types = TOKENIZER_MAPPING[config_class]

        if config_class in IMAGE_PROCESSOR_MAPPING and "image_processor" in allowed_mappings:
            processor_types += _to_tuple(IMAGE_PROCESSOR_MAPPING[config_class])
        elif config_class in FEATURE_EXTRACTOR_MAPPING and "feature_extractor" in allowed_mappings:
            processor_types += _to_tuple(FEATURE_EXTRACTOR_MAPPING[config_class])

    # Remark: some configurations have no processor at all. For example, generic composite models like
    # `EncoderDecoderModel` is used for any (compatible) text models. Also, `DecisionTransformer` doesn't
    # require any processor.

    # We might get `None` for some tokenizers - remove them here.
    processor_types = tuple(p for p in processor_types if p is not None)

    return processor_types


def get_architectures_from_config_class(config_class, arch_mappings, models_to_skip=None):
    """Return a tuple of all possible architectures attributed to a configuration class `config_class`.

    For example, BertConfig -> [BertModel, BertForMaskedLM, ..., BertForQuestionAnswering].
    """
    # A model architecture could appear in several mappings. For example, `BartForConditionalGeneration` is in
    #   - MODEL_FOR_PRETRAINING_MAPPING_NAMES
    #   - MODEL_WITH_LM_HEAD_MAPPING_NAMES
    #   - MODEL_FOR_MASKED_LM_MAPPING_NAMES
    #   - MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
    # We avoid the duplication.
    architectures = set()

    if models_to_skip is None:
        models_to_skip = []
    models_to_skip = UNCONVERTIBLE_MODEL_ARCHITECTURES.union(models_to_skip)

    for mapping in arch_mappings:
        if config_class in mapping:
            models = mapping[config_class]
            models = tuple(models) if isinstance(models, collections.abc.Sequence) else (models,)
            for model in models:
                if model.__name__ not in models_to_skip:
                    architectures.add(model)

    architectures = tuple(architectures)

    return architectures


def get_config_class_from_processor_class(processor_class):
    """Get the config class from a processor class.

    Some config/model classes use tokenizers/feature_extractors from other models. For example, `GPT-J` uses
    `GPT2Tokenizer`. If no checkpoint is found for a config class, or a checkpoint is found without necessary file(s) to
    create the processor for `processor_class`, we get the config class that corresponds to `processor_class` and use it
    to find a checkpoint in order to create the processor.
    """

    processor_prefix = processor_class.__name__
    for postfix in ["TokenizerFast", "Tokenizer", "ImageProcessor", "FeatureExtractor", "Processor"]:
        processor_prefix = processor_prefix.replace(postfix, "")

    # `Wav2Vec2CTCTokenizer` -> `Wav2Vec2Config`
    if processor_prefix == "Wav2Vec2CTC":
        processor_prefix = "Wav2Vec2"

    # Find the new configuration class
    new_config_name = f"{processor_prefix}Config"
    new_config_class = getattr(transformers_module, new_config_name)

    return new_config_class


def build_processor(config_class, processor_class, allow_no_checkpoint=False):
    """Create a processor for `processor_class`.

    If a processor is not able to be built with the original arguments, this method tries to change the arguments and
    call itself recursively, by inferring a new `config_class` or a new `processor_class` from another one, in order to
    find a checkpoint containing the necessary files to build a processor.

    The processor is not saved here. Instead, it will be saved in `convert_processors` after further changes in
    `convert_processors`. For each model architecture`, a copy will be created and saved along the built model.
    """
    # Currently, this solely uses the docstring in the source file of `config_class` to find a checkpoint.
    checkpoint = get_checkpoint_from_config_class(config_class)

    if checkpoint is None:
        # try to get the checkpoint from the config class for `processor_class`.
        # This helps cases like `XCLIPConfig` and `VideoMAEFeatureExtractor` to find a checkpoint from `VideoMAEConfig`.
        config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
        checkpoint = get_checkpoint_from_config_class(config_class_from_processor_class)

    processor = None
    try:
        processor = processor_class.from_pretrained(checkpoint)
    except Exception as e:
        logger.error(f"{e.__class__.__name__}: {e}")

    # Try to get a new processor class from checkpoint. This is helpful for a checkpoint without necessary file to load
    # processor while `processor_class` is an Auto class. For example, `sew` has `Wav2Vec2Processor` in
    # `PROCESSOR_MAPPING_NAMES`, its `tokenizer_class` is `AutoTokenizer`, and the checkpoint
    # `https://huggingface.co/asapp/sew-tiny-100k` has no tokenizer file, but we can get
    # `tokenizer_class: Wav2Vec2CTCTokenizer` from the config file. (The new processor class won't be able to load from
    # `checkpoint`, but it helps this recursive method to find a way to build a processor).
    if (
        processor is None
        and checkpoint is not None
        and issubclass(processor_class, (PreTrainedTokenizerBase, AutoTokenizer))
    ):
        try:
            config = AutoConfig.from_pretrained(checkpoint)
        except Exception as e:
            logger.error(f"{e.__class__.__name__}: {e}")
            config = None
        if config is not None:
            if not isinstance(config, config_class):
                raise ValueError(
                    f"`config` (which is of type {config.__class__.__name__}) should be an instance of `config_class`"
                    f" ({config_class.__name__})!"
                )
            tokenizer_class = config.tokenizer_class
            new_processor_class = None
            if tokenizer_class is not None:
                new_processor_class = getattr(transformers_module, tokenizer_class)
                if new_processor_class != processor_class:
                    processor = build_processor(config_class, new_processor_class)
            # If `tokenizer_class` is not specified in `config`, let's use `config` to get the process class via auto
            # mappings, but only allow the tokenizer mapping being used. This is to make `Wav2Vec2Conformer` build
            if processor is None:
                new_processor_classes = get_processor_types_from_config_class(
                    config.__class__, allowed_mappings=["tokenizer"]
                )
                # Used to avoid infinite recursion between a pair of fast/slow tokenizer types
                names = [
                    x.__name__.replace("Fast", "") for x in [processor_class, new_processor_class] if x is not None
                ]
                new_processor_classes = [
                    x for x in new_processor_classes if x is not None and x.__name__.replace("Fast", "") not in names
                ]
                if len(new_processor_classes) > 0:
                    new_processor_class = new_processor_classes[0]
                    # Let's use fast tokenizer if there is any
                    for x in new_processor_classes:
                        if x.__name__.endswith("Fast"):
                            new_processor_class = x
                            break
                    processor = build_processor(config_class, new_processor_class)

    if processor is None:
        # Try to build each component (tokenizer & feature extractor) of a `ProcessorMixin`.
        if issubclass(processor_class, ProcessorMixin):
            attrs = {}
            for attr_name in processor_class.attributes:
                attrs[attr_name] = []
                # This could be a tuple (for tokenizers). For example, `CLIPProcessor` has
                #   - feature_extractor_class = "CLIPFeatureExtractor"
                #   - tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
                attr_class_names = getattr(processor_class, f"{attr_name}_class")
                if not isinstance(attr_class_names, tuple):
                    attr_class_names = (attr_class_names,)

                for name in attr_class_names:
                    attr_class = getattr(transformers_module, name)
                    attr = build_processor(config_class, attr_class)
                    if attr is not None:
                        attrs[attr_name].append(attr)

            # try to build a `ProcessorMixin`, so we can return a single value
            if all(len(v) > 0 for v in attrs.values()):
                try:
                    processor = processor_class(**{k: v[0] for k, v in attrs.items()})
                except Exception as e:
                    logger.error(f"{e.__class__.__name__}: {e}")
        else:
            # `checkpoint` might lack some file(s) to load a processor. For example, `facebook/hubert-base-ls960`
            # has no tokenizer file to load `Wav2Vec2CTCTokenizer`. In this case, we try to build a processor
            # with the configuration class (for example, `Wav2Vec2Config`) corresponding to `processor_class`.
            config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
            if config_class_from_processor_class != config_class:
                processor = build_processor(config_class_from_processor_class, processor_class)

    # Try to create an image processor or a feature extractor without any checkpoint
    if (
        processor is None
        and allow_no_checkpoint
        and (issubclass(processor_class, BaseImageProcessor) or issubclass(processor_class, FeatureExtractionMixin))
    ):
        try:
            processor = processor_class()
        except Exception as e:
            logger.error(f"{e.__class__.__name__}: {e}")

    # validation
    if processor is not None:
        if not (isinstance(processor, processor_class) or processor_class.__name__.startswith("Auto")):
            raise ValueError(
                f"`processor` (which is of type {processor.__class__.__name__}) should be an instance of"
                f" {processor_class.__name__} or an Auto class!"
            )

    return processor


def get_tiny_config(config_class, model_class=None, **model_tester_kwargs):
    """Retrieve a tiny configuration from `config_class` using each model's `ModelTester`.

    Args:
        config_class: Subclass of `PreTrainedConfig`.

    Returns:
        An instance of `config_class` with tiny hyperparameters
    """
    model_type = config_class.model_type

    # For model type like `data2vec-vision` and `donut-swin`, we can't get the config/model file name directly via
    # `model_type` as it would be sth. like `configuration_data2vec_vision.py`.
    # A simple way is to use `inspect.getsourcefile(config_class)`.
    config_source_file = inspect.getsourcefile(config_class)
    # The modeling file name without prefix (`modeling_`) and postfix (`.py`)
    modeling_name = config_source_file.split(os.path.sep)[-1].replace("configuration_", "").replace(".py", "")

    try:
        print("Importing", model_type_to_module_name(model_type))
        module_name = model_type_to_module_name(model_type)
        if not modeling_name.startswith(module_name):
            raise ValueError(f"{modeling_name} doesn't start with {module_name}!")
        test_file = os.path.join("tests", "models", module_name, f"test_modeling_{modeling_name}.py")
        models_to_model_testers = get_model_to_tester_mapping(test_file)
        # Find the model tester class
        model_tester_class = None
        tester_classes = []
        if model_class is not None:
            tester_classes = get_tester_classes_for_model(test_file, model_class)
        else:
            for _tester_classes in models_to_model_testers.values():
                tester_classes.extend(_tester_classes)
        if len(tester_classes) > 0:
            # sort with the length of the class names first, then the alphabetical order
            # This is to avoid `T5EncoderOnlyModelTest` is used instead of `T5ModelTest`, which has
            # `is_encoder_decoder=False` and causes some pipeline tests failing (also failures in `Optimum` CI).
            # TODO: More fine grained control of the desired tester class.
            model_tester_class = sorted(tester_classes, key=lambda x: (len(x.__name__), x.__name__))[0]
    except ModuleNotFoundError:
        error = f"Tiny config not created for {model_type} - cannot find the testing module from the model name."
        raise ValueError(error)

    if model_tester_class is None:
        error = f"Tiny config not created for {model_type} - no model tester is found in the testing module."
        raise ValueError(error)

    # `parent` is an instance of `unittest.TestCase`, but we don't need it here.
    model_tester = model_tester_class(parent=None, **model_tester_kwargs)

    if hasattr(model_tester, "get_pipeline_config"):
        return model_tester.get_pipeline_config()
    elif hasattr(model_tester, "prepare_config_and_inputs"):
        # `PoolFormer` has no `get_config` defined. Furthermore, it's better to use `prepare_config_and_inputs` even if
        # `get_config` is defined, since there might be some extra changes in `prepare_config_and_inputs`.
        return model_tester.prepare_config_and_inputs()[0]
    elif hasattr(model_tester, "get_config"):
        return model_tester.get_config()
    else:
        error = (
            f"Tiny config not created for {model_type} - the model tester {model_tester_class.__name__} lacks"
            " necessary method to create config."
        )
        raise ValueError(error)


def convert_tokenizer(tokenizer_fast: PreTrainedTokenizerFast):
    new_tokenizer = tokenizer_fast.train_new_from_iterator(
        data["training_ds"]["text"], TARGET_VOCAB_SIZE, show_progress=False
    )

    # Make sure it at least runs
    if not isinstance(new_tokenizer, LayoutLMv3TokenizerFast):
        new_tokenizer(data["testing_ds"]["text"])

    return new_tokenizer


def convert_feature_extractor(feature_extractor, tiny_config):
    to_convert = False
    kwargs = {}
    if hasattr(tiny_config, "image_size"):
        kwargs["size"] = tiny_config.image_size
        kwargs["crop_size"] = tiny_config.image_size
        to_convert = True
    elif (
        hasattr(tiny_config, "vision_config")
        and tiny_config.vision_config is not None
        and hasattr(tiny_config.vision_config, "image_size")
    ):
        kwargs["size"] = tiny_config.vision_config.image_size
        kwargs["crop_size"] = tiny_config.vision_config.image_size
        to_convert = True

    # Speech2TextModel specific.
    if hasattr(tiny_config, "input_feat_per_channel"):
        kwargs["feature_size"] = tiny_config.input_feat_per_channel
        kwargs["num_mel_bins"] = tiny_config.input_feat_per_channel
        to_convert = True

    if to_convert:
        feature_extractor = feature_extractor.__class__(**kwargs)

    return feature_extractor


def convert_processors(processors, tiny_config, output_folder, result):
    """Change a processor to work with smaller inputs.

    For tokenizers, we try to reduce their vocabulary size.

    For feature extractor, we use smaller image size or change
    other attributes using the values from `tiny_config`. See `convert_feature_extractor`.

    This method should not fail: we catch the errors and put them in `result["warnings"]` with descriptive messages.
    """

    def _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False):
        """Set tokenizer(s) to `None` if the fast/slow tokenizers have different values for `vocab_size` or `length`.

        If `keep_fast_tokenizer=True`, the fast tokenizer will be kept.
        """
        # sanity check 1: fast and slow tokenizers should be compatible (vocab_size)
        if fast_tokenizer is not None and slow_tokenizer is not None:
            if fast_tokenizer.vocab_size != slow_tokenizer.vocab_size:
                warning_messagae = (
                    "The fast/slow tokenizers "
                    f"({fast_tokenizer.__class__.__name__}/{slow_tokenizer.__class__.__name__}) have different "
                    "vocabulary size: "
                    f"fast_tokenizer.vocab_size = {fast_tokenizer.vocab_size} and "
                    f"slow_tokenizer.vocab_size = {slow_tokenizer.vocab_size}."
                )
                result["warnings"].append(warning_messagae)
                if not keep_fast_tokenizer:
                    fast_tokenizer = None
                slow_tokenizer = None

        # sanity check 2: fast and slow tokenizers should be compatible (length)
        if fast_tokenizer is not None and slow_tokenizer is not None:
            if len(fast_tokenizer) != len(slow_tokenizer):
                warning_messagae = (
                    f"The fast/slow tokenizers () have different length: "
                    f"len(fast_tokenizer) = {len(fast_tokenizer)} and "
                    f"len(slow_tokenizer) = {len(slow_tokenizer)}."
                )
                result["warnings"].append(warning_messagae)
                if not keep_fast_tokenizer:
                    fast_tokenizer = None
                slow_tokenizer = None

        return fast_tokenizer, slow_tokenizer

    tokenizers = []
    feature_extractors = []
    for processor in processors:
        if isinstance(processor, PreTrainedTokenizerBase):
            if processor.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}:
                tokenizers.append(processor)
        elif isinstance(processor, BaseImageProcessor):
            if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}:
                feature_extractors.append(processor)
        elif isinstance(processor, FeatureExtractionMixin):
            if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}:
                feature_extractors.append(processor)
        elif isinstance(processor, ProcessorMixin):
            if hasattr(processor, "tokenizer"):
                if processor.tokenizer.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}:
                    tokenizers.append(processor.tokenizer)
            # Currently, we only have these 2 possibilities
            if hasattr(processor, "image_processor"):
                if processor.image_processor.__class__.__name__ not in {
                    x.__class__.__name__ for x in feature_extractors
                }:
                    feature_extractors.append(processor.image_processor)
            elif hasattr(processor, "feature_extractor"):
                if processor.feature_extractor.__class__.__name__ not in {
                    x.__class__.__name__ for x in feature_extractors
                }:
                    feature_extractors.append(processor.feature_extractor)

    # check the built processors have the unique type
    num_types = len({x.__class__.__name__ for x in feature_extractors})
    if num_types >= 2:
        raise ValueError(f"`feature_extractors` should contain at most 1 type, but it contains {num_types} types!")
    num_types = len({x.__class__.__name__.replace("Fast", "") for x in tokenizers})
    if num_types >= 2:
        raise ValueError(f"`tokenizers` should contain at most 1 tokenizer type, but it contains {num_types} types!")

    fast_tokenizer = None
    slow_tokenizer = None

    for tokenizer in tokenizers:
        if isinstance(tokenizer, PreTrainedTokenizerFast):
            fast_tokenizer = tokenizer
        else:
            slow_tokenizer = tokenizer

    # If the (original) fast/slow tokenizers don't correspond, keep only the fast tokenizer.
    # This doesn't necessarily imply the fast/slow tokenizers in a single Hub repo. has issues.
    # It's more of an issue in `build_processor` which tries to get a checkpoint with as much effort as possible.
    # For `YosoModel` (which uses `AlbertTokenizer(Fast)`), its real (Hub) checkpoint doesn't contain valid files to
    # load the slower tokenizer (`AlbertTokenizer`), and it ends up finding the (canonical) checkpoint of `AlbertModel`,
    # which has different vocabulary.
    # TODO: Try to improve `build_processor`'s definition and/or usage to avoid the above situation in the first place.
    fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=True)
    original_fast_tokenizer, original_slow_tokenizer = fast_tokenizer, slow_tokenizer

    if fast_tokenizer:
        try:
            # Wav2Vec2ForCTC , ByT5Tokenizer etc. all are already small enough and have no fast version that can
            # be retrained
            if fast_tokenizer.vocab_size > TARGET_VOCAB_SIZE:
                fast_tokenizer = convert_tokenizer(fast_tokenizer)
        except Exception:
            result["warnings"].append(
                (
                    f"Failed to convert the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
                    traceback.format_exc(),
                )
            )

    # If `fast_tokenizer` exists, `slow_tokenizer` should correspond to it.
    if fast_tokenizer:
        # Make sure the fast tokenizer can be saved
        try:
            # We don't save it to `output_folder` at this moment - only at the end of this function.
            with tempfile.TemporaryDirectory() as tmpdir:
                fast_tokenizer.save_pretrained(tmpdir)
                try:
                    slow_tokenizer = AutoTokenizer.from_pretrained(tmpdir, use_fast=False)
                except Exception:
                    result["warnings"].append(
                        (
                            f"Failed to load the slow tokenizer saved from {fast_tokenizer.__class__.__name__}.",
                            traceback.format_exc(),
                        )
                    )
                    # Let's just keep the fast version
                    slow_tokenizer = None
        except Exception:
            result["warnings"].append(
                (
                    f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
                    traceback.format_exc(),
                )
            )
            fast_tokenizer = None

    # If the (possibly converted) fast/slow tokenizers don't correspond, set them to `None`, and use the original
    # tokenizers.
    fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False)

    # If there is any conversion failed, we keep the original tokenizers.
    if (original_fast_tokenizer is not None and fast_tokenizer is None) or (
        original_slow_tokenizer is not None and slow_tokenizer is None
    ):
        warning_messagae = (
            "There are some issues when converting the fast/slow tokenizers. The original tokenizers from the Hub "
            " will be used instead."
        )
        result["warnings"].append(warning_messagae)
        # Let's use the original version at the end (`original_fast_tokenizer` and `original_slow_tokenizer`)
        fast_tokenizer = original_fast_tokenizer
        slow_tokenizer = original_slow_tokenizer

    # Make sure the fast tokenizer can be saved
    if fast_tokenizer:
        # We don't save it to `output_folder` at this moment - only at the end of this function.
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                fast_tokenizer.save_pretrained(tmpdir)
            except Exception:
                result["warnings"].append(
                    (
                        f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
                        traceback.format_exc(),
                    )
                )
                fast_tokenizer = None
    # Make sure the slow tokenizer can be saved
    if slow_tokenizer:
        # We don't save it to `output_folder` at this moment - only at the end of this function.
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                slow_tokenizer.save_pretrained(tmpdir)
            except Exception:
                result["warnings"].append(
                    (
                        f"Failed to save the slow tokenizer for {slow_tokenizer.__class__.__name__}.",
                        traceback.format_exc(),
                    )
                )
                slow_tokenizer = None

    # update feature extractors using the tiny config
    try:
        feature_extractors = [convert_feature_extractor(p, tiny_config) for p in feature_extractors]
    except Exception:
        result["warnings"].append(
            (
                "Failed to convert feature extractors.",
                traceback.format_exc(),
            )
        )
        feature_extractors = []

    if hasattr(tiny_config, "max_position_embeddings") and tiny_config.max_position_embeddings > 0:
        if fast_tokenizer is not None:
            if fast_tokenizer.__class__.__name__ in [
                "RobertaTokenizerFast",
                "XLMRobertaTokenizerFast",
                "LongformerTokenizerFast",
                "MPNetTokenizerFast",
            ]:
                fast_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
            else:
                fast_tokenizer.model_max_length = tiny_config.max_position_embeddings
        if slow_tokenizer is not None:
            if slow_tokenizer.__class__.__name__ in [
                "RobertaTokenizer",
                "XLMRobertaTokenizer",
                "LongformerTokenizer",
                "MPNetTokenizer",
            ]:
                slow_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
            else:
                slow_tokenizer.model_max_length = tiny_config.max_position_embeddings

    processors = [fast_tokenizer, slow_tokenizer] + feature_extractors
    processors = [p for p in processors if p is not None]
    for p in processors:
        p.save_pretrained(output_folder)

    return processors


def get_checkpoint_dir(output_dir, model_arch):
    """Get framework-agnostic architecture name. Used to save all PT/TF/Flax models into the same directory."""

    arch_name = model_arch.__name__
    if arch_name.startswith("TF"):
        arch_name = arch_name[2:]
    elif arch_name.startswith("Flax"):
        arch_name = arch_name[4:]

    return os.path.join(output_dir, arch_name)


def build_model(model_arch, tiny_config, output_dir):
    """Create and save a model for `model_arch`.

    Also copy the set of processors to each model (under the same model type) output folder.
    """

    checkpoint_dir = get_checkpoint_dir(output_dir, model_arch)

    processor_output_dir = os.path.join(output_dir, "processors")
    # copy the (same set of) processors (for a model type) to the model arch. specific folder
    if os.path.isdir(processor_output_dir):
        shutil.copytree(processor_output_dir, checkpoint_dir, dirs_exist_ok=True)

    tiny_config = copy.deepcopy(tiny_config)

    if any(model_arch.__name__.endswith(x) for x in ["ForCausalLM", "LMHeadModel"]):
        tiny_config.is_encoder_decoder = False
        tiny_config.is_decoder = True

    model = model_arch(config=tiny_config)
    model.save_pretrained(checkpoint_dir)
    model.from_pretrained(checkpoint_dir)

    return model


def fill_result_with_error(result, error, trace, models_to_create):
    """Fill `result` with errors for all target model arch if we can't build processor"""
    error = (error, trace)
    result["error"] = error
    for framework in FRAMEWORKS:
        if framework in models_to_create:
            result[framework] = {}
            for model_arch in models_to_create[framework]:
                result[framework][model_arch.__name__] = {"model": None, "checkpoint": None, "error": error}

    result["processor"] = {p.__class__.__name__: p.__class__.__name__ for p in result["processor"].values()}


def upload_model(model_dir, organization, token):
    """Upload the tiny models"""

    arch_name = model_dir.split(os.path.sep)[-1]
    repo_name = f"tiny-random-{arch_name}"
    repo_id = f"{organization}/{repo_name}"

    repo_exist = False
    error = None
    try:
        create_repo(repo_id=repo_id, exist_ok=False, repo_type="model", token=token)
    except Exception as e:
        error = e
        if "You already created" in str(e):
            error = None
            logger.warning("Remote repository exists and will be cloned.")
            repo_exist = True
            try:
                create_repo(repo_id=repo_id, exist_ok=True, repo_type="model", token=token)
            except Exception as e:
                error = e
    if error is not None:
        raise error

    with tempfile.TemporaryDirectory() as tmpdir:
        repo = Repository(local_dir=tmpdir, clone_from=repo_id, token=token)
        repo.git_pull()
        shutil.copytree(model_dir, tmpdir, dirs_exist_ok=True)

        if repo_exist:
            # Open a PR on the existing Hub repo.
            hub_pr_url = upload_folder(
                folder_path=model_dir,
                repo_id=repo_id,
                repo_type="model",
                commit_message=f"Update tiny models for {arch_name}",
                commit_description=f"Upload tiny models for {arch_name}",
                create_pr=True,
                token=token,
            )
            logger.warning(f"PR open in {hub_pr_url}.")
            # TODO: We need this information?
        else:
            # Push to Hub repo directly
            repo.git_add(auto_lfs_track=True)
            repo.git_commit(f"Upload tiny models for {arch_name}")
            repo.git_push(blocking=True)  # this prints a progress bar with the upload
            logger.warning(f"Tiny models {arch_name} pushed to {repo_id}.")


def build_composite_models(config_class, output_dir):
    import tempfile

    from transformers import (
        BertConfig,
        BertLMHeadModel,
        BertModel,
        BertTokenizer,
        BertTokenizerFast,
        EncoderDecoderModel,
        GPT2Config,
        GPT2LMHeadModel,
        GPT2Tokenizer,
        GPT2TokenizerFast,
        SpeechEncoderDecoderModel,
        TFEncoderDecoderModel,
        TFVisionEncoderDecoderModel,
        TFVisionTextDualEncoderModel,
        VisionEncoderDecoderModel,
        VisionTextDualEncoderModel,
        ViTConfig,
        ViTFeatureExtractor,
        ViTModel,
        Wav2Vec2Config,
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )

    # These will be removed at the end if they are empty
    result = {"error": None, "warnings": []}

    if config_class.model_type == "encoder-decoder":
        encoder_config_class = BertConfig
        decoder_config_class = BertConfig
        encoder_processor = (BertTokenizerFast, BertTokenizer)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = BertModel
        decoder_class = BertLMHeadModel
        model_class = EncoderDecoderModel
        tf_model_class = TFEncoderDecoderModel
    elif config_class.model_type == "vision-encoder-decoder":
        encoder_config_class = ViTConfig
        decoder_config_class = GPT2Config
        encoder_processor = (ViTFeatureExtractor,)
        decoder_processor = (GPT2TokenizerFast, GPT2Tokenizer)
        encoder_class = ViTModel
        decoder_class = GPT2LMHeadModel
        model_class = VisionEncoderDecoderModel
        tf_model_class = TFVisionEncoderDecoderModel
    elif config_class.model_type == "speech-encoder-decoder":
        encoder_config_class = Wav2Vec2Config
        decoder_config_class = BertConfig
        encoder_processor = (Wav2Vec2Processor,)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = Wav2Vec2Model
        decoder_class = BertLMHeadModel
        model_class = SpeechEncoderDecoderModel
        tf_model_class = None
    elif config_class.model_type == "vision-text-dual-encoder":
        # Not encoder-decoder, but encoder-encoder. We just keep the same name as above to make code easier
        encoder_config_class = ViTConfig
        decoder_config_class = BertConfig
        encoder_processor = (ViTFeatureExtractor,)
        decoder_processor = (BertTokenizerFast, BertTokenizer)
        encoder_class = ViTModel
        decoder_class = BertModel
        model_class = VisionTextDualEncoderModel
        tf_model_class = TFVisionTextDualEncoderModel

    with tempfile.TemporaryDirectory() as tmpdir:
        try:
            # build encoder
            models_to_create = {"processor": encoder_processor, "pytorch": (encoder_class,), "tensorflow": []}
            encoder_output_dir = os.path.join(tmpdir, "encoder")
            build(encoder_config_class, models_to_create, encoder_output_dir)

            # build decoder
            models_to_create = {"processor": decoder_processor, "pytorch": (decoder_class,), "tensorflow": []}
            decoder_output_dir = os.path.join(tmpdir, "decoder")
            build(decoder_config_class, models_to_create, decoder_output_dir)

            # build encoder-decoder
            encoder_path = os.path.join(encoder_output_dir, encoder_class.__name__)
            decoder_path = os.path.join(decoder_output_dir, decoder_class.__name__)

            if config_class.model_type != "vision-text-dual-encoder":
                # Specify these explicitly for encoder-decoder like models, but not for `vision-text-dual-encoder` as it
                # has no decoder.
                decoder_config = decoder_config_class.from_pretrained(decoder_path)
                decoder_config.is_decoder = True
                decoder_config.add_cross_attention = True
                model = model_class.from_encoder_decoder_pretrained(
                    encoder_path,
                    decoder_path,
                    decoder_config=decoder_config,
                )
            elif config_class.model_type == "vision-text-dual-encoder":
                model = model_class.from_vision_text_pretrained(encoder_path, decoder_path)

            model_path = os.path.join(
                output_dir,
                f"{model_class.__name__}-{encoder_config_class.model_type}-{decoder_config_class.model_type}",
            )
            model.save_pretrained(model_path)

            if tf_model_class is not None:
                model = tf_model_class.from_pretrained(model_path, from_pt=True)
                model.save_pretrained(model_path)

            # copy the processors
            encoder_processor_path = os.path.join(encoder_output_dir, "processors")
            decoder_processor_path = os.path.join(decoder_output_dir, "processors")
            if os.path.isdir(encoder_processor_path):
                shutil.copytree(encoder_processor_path, model_path, dirs_exist_ok=True)
            if os.path.isdir(decoder_processor_path):
                shutil.copytree(decoder_processor_path, model_path, dirs_exist_ok=True)

            # fill `result`
            result["processor"] = {x.__name__: x.__name__ for x in encoder_processor + decoder_processor}

            result["pytorch"] = {model_class.__name__: {"model": model_class.__name__, "checkpoint": model_path}}

            result["tensorflow"] = {}
            if tf_model_class is not None:
                result["tensorflow"] = {
                    tf_model_class.__name__: {"model": tf_model_class.__name__, "checkpoint": model_path}
                }
        except Exception:
            result["error"] = (
                f"Failed to build models for {config_class.__name__}.",
                traceback.format_exc(),
            )

    if not result["error"]:
        del result["error"]
    if not result["warnings"]:
        del result["warnings"]

    return result


def get_token_id_from_tokenizer(token_id_name, tokenizer, original_token_id):
    """Use `tokenizer` to get the values of `bos_token_id`, `eos_token_ids`, etc.

    The argument `token_id_name` should be a string ending with `_token_id`, and `original_token_id` should be an
    integer that will be return if `tokenizer` has no token corresponding to `token_id_name`.
    """

    token_id = original_token_id

    if not token_id_name.endswith("_token_id"):
        raise ValueError(f"`token_id_name` is {token_id_name}, which doesn't end with `_token_id`!")

    token = getattr(tokenizer, token_id_name.replace("_token_id", "_token"), None)
    if token is not None:
        if isinstance(tokenizer, PreTrainedTokenizerFast):
            token_id = tokenizer._convert_token_to_id_with_added_voc(token)
        else:
            token_id = tokenizer._convert_token_to_id(token)

    return token_id


def get_config_overrides(config_class, processors):
    # `Bark` configuration is too special. Let's just not handle this for now.
    if config_class.__name__ == "BarkConfig":
        return {}

    config_overrides = {}

    # Check if there is any tokenizer (prefer fast version if any)
    tokenizer = None
    for processor in processors:
        if isinstance(processor, PreTrainedTokenizerFast):
            tokenizer = processor
            break
        elif isinstance(processor, PreTrainedTokenizer):
            tokenizer = processor

    if tokenizer is None:
        return config_overrides

    # Get some properties of the (already converted) tokenizer (smaller vocab size, special token ids, etc.)
    # We use `len(tokenizer)` instead of `tokenizer.vocab_size` to avoid potential issues for tokenizers with non-empty
    # `added_tokens_encoder`. One example is the `DebertaV2Tokenizer` where the mask token is the extra token.
    vocab_size = len(tokenizer)

    # The original checkpoint has length `35998`, but it doesn't have ids `30400` and `30514` but instead `35998` and
    # `35999`.
    if config_class.__name__ == "GPTSanJapaneseConfig":
        vocab_size += 2

    config_overrides["vocab_size"] = vocab_size

    # Used to create a new model tester with `tokenizer.vocab_size` in order to get the (updated) special token ids.
    model_tester_kwargs = {"vocab_size": vocab_size}
    # CLIP-like models have `text_model_tester` and `vision_model_tester`, and we need to pass `vocab_size` to
    # `text_model_tester` via `text_kwargs`. The same trick is also necessary for `Flava`.
    if config_class.__name__ in [
        "AlignConfig",
        "AltCLIPConfig",
        "ChineseCLIPConfig",
        "CLIPSegConfig",
        "ClapConfig",
        "CLIPConfig",
        "GroupViTConfig",
        "OwlViTConfig",
        "XCLIPConfig",
        "FlavaConfig",
        "BlipConfig",
        "Blip2Config",
    ]:
        del model_tester_kwargs["vocab_size"]
        model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size}
    # `FSMTModelTester` accepts `src_vocab_size` and `tgt_vocab_size` but not `vocab_size`.
    elif config_class.__name__ == "FSMTConfig":
        del model_tester_kwargs["vocab_size"]
        model_tester_kwargs["src_vocab_size"] = tokenizer.src_vocab_size
        model_tester_kwargs["tgt_vocab_size"] = tokenizer.tgt_vocab_size

    _tiny_config = get_tiny_config(config_class, **model_tester_kwargs)

    # handle the possibility of `text_config` inside `_tiny_config` for clip-like models (`owlvit`, `groupvit`, etc.)
    if hasattr(_tiny_config, "text_config"):
        _tiny_config = _tiny_config.text_config

    # Collect values of some special token ids
    for attr in dir(_tiny_config):
        if attr.endswith("_token_id"):
            token_id = getattr(_tiny_config, attr)
            if token_id is not None:
                # Using the token id values from `tokenizer` instead of from `_tiny_config`.
                token_id = get_token_id_from_tokenizer(attr, tokenizer, original_token_id=token_id)
                config_overrides[attr] = token_id

    if config_class.__name__ == "FSMTConfig":
        config_overrides["src_vocab_size"] = tokenizer.src_vocab_size
        config_overrides["tgt_vocab_size"] = tokenizer.tgt_vocab_size
        # `FSMTConfig` has `DecoderConfig` as `decoder` attribute.
        config_overrides["decoder"] = configuration_fsmt.DecoderConfig(
            vocab_size=tokenizer.tgt_vocab_size, bos_token_id=config_overrides["eos_token_id"]
        )

    return config_overrides


def build(config_class, models_to_create, output_dir):
    """Create all models for a certain model type.

    Args:
        config_class (`PretrainedConfig`):
            A subclass of `PretrainedConfig` that is used to determine `models_to_create`.
        models_to_create (`dict`):
            A dictionary containing the processor/model classes that we want to create the instances. These models are
            of the same model type which is associated to `config_class`.
        output_dir (`str`):
            The directory to save all the checkpoints. Each model architecture will be saved in a subdirectory under
            it. Models in different frameworks with the same architecture will be saved in the same subdirectory.
    """
    if data["training_ds"] is None or data["testing_ds"] is None:
        ds = load_dataset("wikitext", "wikitext-2-raw-v1")
        data["training_ds"] = ds["train"]
        data["testing_ds"] = ds["test"]

    if config_class.model_type in [
        "encoder-decoder",
        "vision-encoder-decoder",
        "speech-encoder-decoder",
        "vision-text-dual-encoder",
    ]:
        return build_composite_models(config_class, output_dir)

    result = {k: {} for k in models_to_create}

    # These will be removed at the end if they are empty
    result["error"] = None
    result["warnings"] = []

    # Build processors
    processor_classes = models_to_create["processor"]

    if len(processor_classes) == 0:
        error = f"No processor class could be found in {config_class.__name__}."
        fill_result_with_error(result, error, None, models_to_create)
        logger.error(result["error"][0])
        return result

    for processor_class in processor_classes:
        try:
            processor = build_processor(config_class, processor_class, allow_no_checkpoint=True)
            if processor is not None:
                result["processor"][processor_class] = processor
        except Exception:
            error = f"Failed to build processor for {processor_class.__name__}."
            trace = traceback.format_exc()
            fill_result_with_error(result, error, trace, models_to_create)
            logger.error(result["error"][0])
            return result

    if len(result["processor"]) == 0:
        error = f"No processor could be built for {config_class.__name__}."
        fill_result_with_error(result, error, None, models_to_create)
        logger.error(result["error"][0])
        return result

    try:
        tiny_config = get_tiny_config(config_class)
    except Exception as e:
        error = f"Failed to get tiny config for {config_class.__name__}: {e}"
        trace = traceback.format_exc()
        fill_result_with_error(result, error, trace, models_to_create)
        logger.error(result["error"][0])
        return result

    # Convert the processors (reduce vocabulary size, smaller image size, etc.)
    processors = list(result["processor"].values())
    processor_output_folder = os.path.join(output_dir, "processors")
    try:
        processors = convert_processors(processors, tiny_config, processor_output_folder, result)
    except Exception:
        error = "Failed to convert the processors."
        trace = traceback.format_exc()
        result["warnings"].append((error, trace))

    if len(processors) == 0:
        error = f"No processor is returned by `convert_processors` for {config_class.__name__}."
        fill_result_with_error(result, error, None, models_to_create)
        logger.error(result["error"][0])
        return result

    try:
        config_overrides = get_config_overrides(config_class, processors)
    except Exception as e:
        error = f"Failure occurs while calling `get_config_overrides`: {e}"
        trace = traceback.format_exc()
        fill_result_with_error(result, error, trace, models_to_create)
        logger.error(result["error"][0])
        return result

    # Just for us to see this easily in the report
    if "vocab_size" in config_overrides:
        result["vocab_size"] = config_overrides["vocab_size"]

    # Update attributes that `vocab_size` involves
    for k, v in config_overrides.items():
        if hasattr(tiny_config, k):
            setattr(tiny_config, k, v)
        # So far, we only have to deal with `text_config`, as `config_overrides` contains text-related attributes only.
        elif (
            hasattr(tiny_config, "text_config")
            and tiny_config.text_config is not None
            and hasattr(tiny_config.text_config, k)
        ):
            setattr(tiny_config.text_config, k, v)
            # If `text_config_dict` exists, we need to update its value here too in order to # make
            # `save_pretrained -> from_pretrained` work.
            if hasattr(tiny_config, "text_config_dict"):
                tiny_config.text_config_dict[k] = v

    if result["warnings"]:
        logger.warning(result["warnings"][0][0])

    # update `result["processor"]`
    result["processor"] = {type(p).__name__: p.__class__.__name__ for p in processors}

    for pytorch_arch in models_to_create["pytorch"]:
        result["pytorch"][pytorch_arch.__name__] = {}
        error = None
        try:
            model = build_model(pytorch_arch, tiny_config, output_dir=output_dir)
        except Exception as e:
            model = None
            error = f"Failed to create the pytorch model for {pytorch_arch}: {e}"
            trace = traceback.format_exc()

        result["pytorch"][pytorch_arch.__name__]["model"] = model.__class__.__name__ if model is not None else None
        result["pytorch"][pytorch_arch.__name__]["checkpoint"] = (
            get_checkpoint_dir(output_dir, pytorch_arch) if model is not None else None
        )
        if error is not None:
            result["pytorch"][pytorch_arch.__name__]["error"] = (error, trace)
            logger.error(f"{pytorch_arch.__name__}: {error}")

    for tensorflow_arch in models_to_create["tensorflow"]:
        # Make PT/TF weights compatible
        pt_arch_name = tensorflow_arch.__name__[2:]  # Remove `TF`
        pt_arch = getattr(transformers_module, pt_arch_name)

        result["tensorflow"][tensorflow_arch.__name__] = {}
        error = None
        if pt_arch.__name__ in result["pytorch"] and result["pytorch"][pt_arch.__name__]["checkpoint"] is not None:
            ckpt = get_checkpoint_dir(output_dir, pt_arch)
            # Use the same weights from PyTorch.
            try:
                model = tensorflow_arch.from_pretrained(ckpt, from_pt=True)
                model.save_pretrained(ckpt)
            except Exception as e:
                # Conversion may fail. Let's not create a model with different weights to avoid confusion (for now).
                model = None
                error = f"Failed to convert the pytorch model to the tensorflow model for {pt_arch}: {e}"
                trace = traceback.format_exc()
        else:
            try:
                model = build_model(tensorflow_arch, tiny_config, output_dir=output_dir)
            except Exception as e:
                model = None
                error = f"Failed to create the tensorflow model for {tensorflow_arch}: {e}"
                trace = traceback.format_exc()

        result["tensorflow"][tensorflow_arch.__name__]["model"] = (
            model.__class__.__name__ if model is not None else None
        )
        result["tensorflow"][tensorflow_arch.__name__]["checkpoint"] = (
            get_checkpoint_dir(output_dir, tensorflow_arch) if model is not None else None
        )
        if error is not None:
            result["tensorflow"][tensorflow_arch.__name__]["error"] = (error, trace)
            logger.error(f"{tensorflow_arch.__name__}: {error}")

    if not result["error"]:
        del result["error"]
    if not result["warnings"]:
        del result["warnings"]

    return result


def build_tiny_model_summary(results, organization=None, token=None):
    """Build a summary: a dictionary of the form
    {
      model architecture name:
        {
          "tokenizer_classes": [...],
          "processor_classes": [...],
          "model_classes": [...],
        }
      ..
    }
    """
    tiny_model_summary = {}
    for config_name in results:
        processors = [key for key, value in results[config_name]["processor"].items()]
        tokenizer_classes = sorted([x for x in processors if x.endswith("TokenizerFast") or x.endswith("Tokenizer")])
        processor_classes = sorted([x for x in processors if x not in tokenizer_classes])
        for framework in FRAMEWORKS:
            if framework not in results[config_name]:
                continue
            for arch_name in results[config_name][framework]:
                model_classes = [arch_name]
                base_arch_name = arch_name[2:] if arch_name.startswith("TF") else arch_name
                # tiny model is not created for `arch_name`
                if results[config_name][framework][arch_name]["model"] is None:
                    model_classes = []
                if base_arch_name not in tiny_model_summary:
                    tiny_model_summary[base_arch_name] = {}
                tiny_model_summary[base_arch_name].update(
                    {
                        "tokenizer_classes": tokenizer_classes,
                        "processor_classes": processor_classes,
                    }
                )
                tiny_model_summary[base_arch_name]["model_classes"] = sorted(
                    tiny_model_summary[base_arch_name].get("model_classes", []) + model_classes
                )
                if organization is not None:
                    repo_name = f"tiny-random-{base_arch_name}"
                    # composite models' checkpoints have more precise repo. names on the Hub.
                    if base_arch_name in COMPOSITE_MODELS:
                        repo_name = f"tiny-random-{COMPOSITE_MODELS[base_arch_name]}"
                    repo_id = f"{organization}/{repo_name}"
                    try:
                        commit_hash = hf_api.repo_info(repo_id, token=token).sha
                    except Exception:
                        # The directory is not created, but processor(s) is/are included in `results`.
                        logger.warning(f"Failed to get information for {repo_id}.\n{traceback.format_exc()}")
                        del tiny_model_summary[base_arch_name]
                        continue
                    tiny_model_summary[base_arch_name]["sha"] = commit_hash

    return tiny_model_summary


def build_failed_report(results, include_warning=True):
    failed_results = {}
    for config_name in results:
        if "error" in results[config_name]:
            if config_name not in failed_results:
                failed_results[config_name] = {}
            failed_results[config_name] = {"error": results[config_name]["error"]}

        if include_warning and "warnings" in results[config_name]:
            if config_name not in failed_results:
                failed_results[config_name] = {}
            failed_results[config_name]["warnings"] = results[config_name]["warnings"]

        for framework in FRAMEWORKS:
            if framework not in results[config_name]:
                continue
            for arch_name in results[config_name][framework]:
                if "error" in results[config_name][framework][arch_name]:
                    if config_name not in failed_results:
                        failed_results[config_name] = {}
                    if framework not in failed_results[config_name]:
                        failed_results[config_name][framework] = {}
                    if arch_name not in failed_results[config_name][framework]:
                        failed_results[config_name][framework][arch_name] = {}
                    error = results[config_name][framework][arch_name]["error"]
                    failed_results[config_name][framework][arch_name]["error"] = error

    return failed_results


def build_simple_report(results):
    text = ""
    failed_text = ""
    for config_name in results:
        for framework in FRAMEWORKS:
            if framework not in results[config_name]:
                continue
            for arch_name in results[config_name][framework]:
                if "error" in results[config_name][framework][arch_name]:
                    result = results[config_name][framework][arch_name]["error"]
                    failed_text += f"{arch_name}: {result[0]}\n"
                else:
                    result = ("OK",)
                text += f"{arch_name}: {result[0]}\n"

    return text, failed_text


def update_tiny_model_summary_file(report_path):
    with open(os.path.join(report_path, "tiny_model_summary.json")) as fp:
        new_data = json.load(fp)
    with open("tests/utils/tiny_model_summary.json") as fp:
        data = json.load(fp)
    for key, value in new_data.items():
        if key not in data:
            data[key] = value
        else:
            for attr in ["tokenizer_classes", "processor_classes", "model_classes"]:
                # we might get duplication here. We will remove them below when creating `updated_data`.
                data[key][attr].extend(value[attr])
            new_sha = value.get("sha", None)
            if new_sha is not None:
                data[key]["sha"] = new_sha

    updated_data = {}
    for key in sorted(data.keys()):
        updated_data[key] = {}
        for attr, value in data[key].items():
            # deduplication and sort
            updated_data[key][attr] = sorted(set(value)) if attr != "sha" else value

    with open(os.path.join(report_path, "updated_tiny_model_summary.json"), "w") as fp:
        json.dump(updated_data, fp, indent=4, ensure_ascii=False)


def create_tiny_models(
    output_path,
    all,
    model_types,
    models_to_skip,
    no_check,
    upload,
    organization,
    token,
    num_workers=1,
):
    clone_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
    if os.getcwd() != clone_path:
        raise ValueError(f"This script should be run from the root of the clone of `transformers` {clone_path}")

    report_path = os.path.join(output_path, "reports")
    os.makedirs(report_path)

    _pytorch_arch_mappings = [
        x
        for x in dir(transformers_module)
        if x.startswith("MODEL_") and x.endswith("_MAPPING") and x != "MODEL_NAMES_MAPPING"
    ]
    _tensorflow_arch_mappings = [
        x for x in dir(transformers_module) if x.startswith("TF_MODEL_") and x.endswith("_MAPPING")
    ]

    pytorch_arch_mappings = [getattr(transformers_module, x) for x in _pytorch_arch_mappings]
    tensorflow_arch_mappings = [getattr(transformers_module, x) for x in _tensorflow_arch_mappings]

    config_classes = CONFIG_MAPPING.values()
    if not all:
        config_classes = [CONFIG_MAPPING[model_type] for model_type in model_types]

    # A map from config classes to tuples of processors (tokenizer, feature extractor, processor) classes
    processor_type_map = {c: get_processor_types_from_config_class(c) for c in config_classes}

    to_create = {}
    for c in config_classes:
        processors = processor_type_map[c]
        models = get_architectures_from_config_class(c, pytorch_arch_mappings, models_to_skip)
        tf_models = get_architectures_from_config_class(c, tensorflow_arch_mappings, models_to_skip)
        if len(models) + len(tf_models) > 0:
            to_create[c] = {"processor": processors, "pytorch": models, "tensorflow": tf_models}

    results = {}
    if num_workers <= 1:
        for c, models_to_create in list(to_create.items()):
            print(f"Create models for {c.__name__} ...")
            result = build(c, models_to_create, output_dir=os.path.join(output_path, c.model_type))
            results[c.__name__] = result
            print("=" * 40)
    else:
        all_build_args = []
        for c, models_to_create in list(to_create.items()):
            all_build_args.append((c, models_to_create, os.path.join(output_path, c.model_type)))
        with multiprocessing.Pool() as pool:
            results = pool.starmap(build, all_build_args)
            results = {buid_args[0].__name__: result for buid_args, result in zip(all_build_args, results)}

    if upload:
        if organization is None:
            raise ValueError("The argument `organization` could not be `None`. No model is uploaded")

        to_upload = []
        for model_type in os.listdir(output_path):
            # This is the directory containing the reports
            if model_type == "reports":
                continue
            for arch in os.listdir(os.path.join(output_path, model_type)):
                if arch == "processors":
                    continue
                to_upload.append(os.path.join(output_path, model_type, arch))
        to_upload = sorted(to_upload)

        upload_results = {}
        if len(to_upload) > 0:
            for model_dir in to_upload:
                try:
                    upload_model(model_dir, organization, token)
                except Exception as e:
                    error = f"Failed to upload {model_dir}. {e.__class__.__name__}: {e}"
                    logger.error(error)
                    upload_results[model_dir] = error

        with open(os.path.join(report_path, "failed_uploads.json"), "w") as fp:
            json.dump(upload_results, fp, indent=4)

    # Build the tiny model summary file. The `tokenizer_classes` and `processor_classes` could be both empty lists.
    # When using the items in this file to update the file `tests/utils/tiny_model_summary.json`, the model
    # architectures with `tokenizer_classes` and `processor_classes` being both empty should **NOT** be added to
    # `tests/utils/tiny_model_summary.json`.
    tiny_model_summary = build_tiny_model_summary(results, organization=organization, token=token)
    with open(os.path.join(report_path, "tiny_model_summary.json"), "w") as fp:
        json.dump(tiny_model_summary, fp, indent=4)

    with open(os.path.join(report_path, "tiny_model_creation_report.json"), "w") as fp:
        json.dump(results, fp, indent=4)

    # Build the warning/failure report (json format): same format as the complete `results` except this contains only
    # warnings or errors.
    failed_results = build_failed_report(results)
    with open(os.path.join(report_path, "failed_report.json"), "w") as fp:
        json.dump(failed_results, fp, indent=4)

    simple_report, failed_report = build_simple_report(results)
    # The simplified report: a .txt file with each line of format:
    # {model architecture name}: {OK or error message}
    with open(os.path.join(report_path, "simple_report.txt"), "w") as fp:
        fp.write(simple_report)

    # The simplified failure report: same above except this only contains line with errors
    with open(os.path.join(report_path, "simple_failed_report.txt"), "w") as fp:
        fp.write(failed_report)

    update_tiny_model_summary_file(report_path=os.path.join(output_path, "reports"))


if __name__ == "__main__":
    # This has to be `spawn` to avoid hanging forever!
    multiprocessing.set_start_method("spawn")

    def list_str(values):
        return values.split(",")

    parser = argparse.ArgumentParser()
    parser.add_argument("--all", action="store_true", help="Will create all tiny models.")
    parser.add_argument(
        "--no_check",
        action="store_true",
        help="If set, will not check the validity of architectures. Use with caution.",
    )
    parser.add_argument(
        "-m",
        "--model_types",
        type=list_str,
        help="Comma-separated list of model type(s) from which the tiny models will be created.",
    )
    parser.add_argument(
        "--models_to_skip",
        type=list_str,
        help=(
            "Comma-separated list of model class names(s) from which the tiny models won't be created.\nThis is usually"
            "the list of model classes that have their tiny versions already uploaded to the Hub."
        ),
    )
    parser.add_argument("--upload", action="store_true", help="If to upload the created tiny models to the Hub.")
    parser.add_argument(
        "--organization",
        default=None,
        type=str,
        help="The organization on the Hub to which the tiny models will be uploaded.",
    )
    parser.add_argument(
        "--token", default=None, type=str, help="A valid authentication token for HuggingFace Hub with write access."
    )
    parser.add_argument("output_path", type=Path, help="Path indicating where to store generated model.")
    parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.")

    args = parser.parse_args()

    if not args.all and not args.model_types:
        raise ValueError("Please provide at least one model type or pass `--all` to export all architectures.")

    create_tiny_models(
        args.output_path,
        args.all,
        args.model_types,
        args.models_to_skip,
        args.no_check,
        args.upload,
        args.organization,
        args.token,
        args.num_workers,
    )