File size: 43,123 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Bark model. """


import copy
import inspect
import tempfile
import unittest

from transformers import (
    BarkCoarseConfig,
    BarkConfig,
    BarkFineConfig,
    BarkSemanticConfig,
    is_torch_available,
)
from transformers.models.bark.generation_configuration_bark import (
    BarkCoarseGenerationConfig,
    BarkFineGenerationConfig,
    BarkSemanticGenerationConfig,
)
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from transformers.utils import cached_property

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ..encodec.test_modeling_encodec import EncodecModelTester


if is_torch_available():
    import torch

    from transformers import (
        BarkCausalModel,
        BarkCoarseModel,
        BarkFineModel,
        BarkModel,
        BarkProcessor,
        BarkSemanticModel,
    )


class BarkSemanticModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=4,
        is_training=False,  # for now training is not supported
        use_input_mask=True,
        use_labels=True,
        vocab_size=33,
        output_vocab_size=33,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=15,
        dropout=0.1,
        window_size=256,
        initializer_range=0.02,
        n_codes_total=8,  # for BarkFineModel
        n_codes_given=1,  # for BarkFineModel
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.output_vocab_size = output_vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.window_size = window_size
        self.initializer_range = initializer_range
        self.bos_token_id = output_vocab_size - 1
        self.eos_token_id = output_vocab_size - 1
        self.pad_token_id = output_vocab_size - 1

        self.n_codes_total = n_codes_total
        self.n_codes_given = n_codes_given

        self.is_encoder_decoder = False

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        inputs_dict = {
            "input_ids": input_ids,
            "head_mask": head_mask,
            "attention_mask": input_mask,
        }

        return config, inputs_dict

    def get_config(self):
        return BarkSemanticConfig(
            vocab_size=self.vocab_size,
            output_vocab_size=self.output_vocab_size,
            hidden_size=self.hidden_size,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            window_size=self.window_size,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        config.output_vocab_size = 300
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BarkSemanticModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "logits"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

        # test no attention_mask works
        outputs = model(input_ids, use_cache=True)
        _, past_key_values = outputs.to_tuple()
        output_from_no_past = model(next_input_ids)["logits"]

        output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"]

        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))


class BarkCoarseModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=4,
        is_training=False,  # for now training is not supported
        use_input_mask=True,
        use_labels=True,
        vocab_size=33,
        output_vocab_size=33,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=15,
        dropout=0.1,
        window_size=256,
        initializer_range=0.02,
        n_codes_total=8,  # for BarkFineModel
        n_codes_given=1,  # for BarkFineModel
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.output_vocab_size = output_vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.window_size = window_size
        self.initializer_range = initializer_range
        self.bos_token_id = output_vocab_size - 1
        self.eos_token_id = output_vocab_size - 1
        self.pad_token_id = output_vocab_size - 1

        self.n_codes_total = n_codes_total
        self.n_codes_given = n_codes_given

        self.is_encoder_decoder = False

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        inputs_dict = {
            "input_ids": input_ids,
            "head_mask": head_mask,
            "attention_mask": input_mask,
        }

        return config, inputs_dict

    def get_config(self):
        return BarkCoarseConfig(
            vocab_size=self.vocab_size,
            output_vocab_size=self.output_vocab_size,
            hidden_size=self.hidden_size,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            window_size=self.window_size,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        config.output_vocab_size = 300
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BarkCoarseModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "logits"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

        # test no attention_mask works
        outputs = model(input_ids, use_cache=True)
        _, past_key_values = outputs.to_tuple()
        output_from_no_past = model(next_input_ids)["logits"]

        output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"]

        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))


class BarkFineModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        seq_length=4,
        is_training=False,  # for now training is not supported
        use_input_mask=True,
        use_labels=True,
        vocab_size=33,
        output_vocab_size=33,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=2,
        intermediate_size=15,
        dropout=0.1,
        window_size=256,
        initializer_range=0.02,
        n_codes_total=8,  # for BarkFineModel
        n_codes_given=1,  # for BarkFineModel
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.output_vocab_size = output_vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.window_size = window_size
        self.initializer_range = initializer_range
        self.bos_token_id = output_vocab_size - 1
        self.eos_token_id = output_vocab_size - 1
        self.pad_token_id = output_vocab_size - 1

        self.n_codes_total = n_codes_total
        self.n_codes_given = n_codes_given

        self.is_encoder_decoder = False

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length, self.n_codes_total], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        config = self.get_config()

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        # randint between self.n_codes_given - 1 and self.n_codes_total - 1
        codebook_idx = ids_tensor((1,), self.n_codes_total - self.n_codes_given).item() + self.n_codes_given

        inputs_dict = {
            "codebook_idx": codebook_idx,
            "input_ids": input_ids,
            "head_mask": head_mask,
            "attention_mask": input_mask,
        }

        return config, inputs_dict

    def get_config(self):
        return BarkFineConfig(
            vocab_size=self.vocab_size,
            output_vocab_size=self.output_vocab_size,
            hidden_size=self.hidden_size,
            num_layers=self.num_hidden_layers,
            num_heads=self.num_attention_heads,
            use_cache=True,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
            window_size=self.window_size,
        )

    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        config.output_vocab_size = 300
        return config

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BarkFineModel(config=config).to(torch_device).eval()

        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "logits"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

        # test no attention_mask works
        outputs = model(input_ids, use_cache=True)
        _, past_key_values = outputs.to_tuple()
        output_from_no_past = model(next_input_ids)["logits"]

        output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"]

        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))


class BarkModelTester:
    def __init__(
        self,
        parent,
        semantic_kwargs=None,
        coarse_acoustics_kwargs=None,
        fine_acoustics_kwargs=None,
        codec_kwargs=None,
        is_training=False,  # for now training is not supported
    ):
        if semantic_kwargs is None:
            semantic_kwargs = {}
        if coarse_acoustics_kwargs is None:
            coarse_acoustics_kwargs = {}
        if fine_acoustics_kwargs is None:
            fine_acoustics_kwargs = {}
        if codec_kwargs is None:
            codec_kwargs = {}

        self.parent = parent
        self.semantic_model_tester = BarkSemanticModelTester(parent, **semantic_kwargs)
        self.coarse_acoustics_model_tester = BarkCoarseModelTester(parent, **coarse_acoustics_kwargs)
        self.fine_acoustics_model_tester = BarkFineModelTester(parent, **fine_acoustics_kwargs)
        self.codec_model_tester = EncodecModelTester(parent, **codec_kwargs)

        self.is_training = is_training

    def prepare_config_and_inputs(self):
        # TODO: @Yoach: Preapre `inputs_dict`
        inputs_dict = {}
        config = self.get_config()

        return config, inputs_dict

    def get_config(self):
        return BarkConfig.from_sub_model_configs(
            self.semantic_model_tester.get_config(),
            self.coarse_acoustics_model_tester.get_config(),
            self.fine_acoustics_model_tester.get_config(),
            self.codec_model_tester.get_config(),
        )

    def get_pipeline_config(self):
        config = self.get_config()

        # follow the `get_pipeline_config` of the sub component models
        config.semantic_config.vocab_size = 300
        config.coarse_acoustics_config.vocab_size = 300
        config.fine_acoustics_config.vocab_size = 300

        config.semantic_config.output_vocab_size = 300
        config.coarse_acoustics_config.output_vocab_size = 300
        config.fine_acoustics_config.output_vocab_size = 300

        return config

    def prepare_config_and_inputs_for_common(self):
        # TODO: @Yoach
        pass
        # return config, inputs_dict


# Need this class in oder to create tiny model for `bark`
# TODO (@Yoach) Implement actual test methods
@unittest.skip("So far all tests will fail.")
class BarkModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BarkModel,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = BarkModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BarkConfig, n_embd=37)


@require_torch
class BarkSemanticModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BarkSemanticModel,) if is_torch_available() else ()
    all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else ()

    is_encoder_decoder = False
    fx_compatible = False
    test_missing_keys = False
    test_pruning = False
    test_model_parallel = False
    # no model_parallel for now

    test_resize_embeddings = True

    def setUp(self):
        self.model_tester = BarkSemanticModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BarkSemanticConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            input_ids = inputs["input_ids"]
            del inputs["input_ids"]

            wte = model.get_input_embeddings()
            inputs["input_embeds"] = wte(input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = self.all_generative_model_classes[0](config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


@require_torch
class BarkCoarseModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    # Same tester as BarkSemanticModelTest, except for model_class and config_class
    all_model_classes = (BarkCoarseModel,) if is_torch_available() else ()
    all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else ()

    is_encoder_decoder = False
    fx_compatible = False
    test_missing_keys = False
    test_pruning = False
    test_model_parallel = False
    # no model_parallel for now

    test_resize_embeddings = True

    def setUp(self):
        self.model_tester = BarkCoarseModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BarkCoarseConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            input_ids = inputs["input_ids"]
            del inputs["input_ids"]

            wte = model.get_input_embeddings()
            inputs["input_embeds"] = wte(input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = self.all_generative_model_classes[0](config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


@require_torch
class BarkFineModelTest(ModelTesterMixin, unittest.TestCase):
    all_model_classes = (BarkFineModel,) if is_torch_available() else ()

    is_encoder_decoder = False
    fx_compatible = False
    test_missing_keys = False
    test_pruning = False
    # no model_parallel for now
    test_model_parallel = False

    # torchscript disabled for now because forward with an int
    test_torchscript = False

    test_resize_embeddings = True

    def setUp(self):
        self.model_tester = BarkFineModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BarkFineConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            input_ids = inputs["input_ids"]
            del inputs["input_ids"]

            wte = model.get_input_embeddings()[inputs_dict["codebook_idx"]]

            inputs["input_embeds"] = wte(input_ids[:, :, inputs_dict["codebook_idx"]])

            with torch.no_grad():
                model(**inputs)[0]

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        # take first codebook channel

        model = self.all_model_classes[0](config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()

        # toy generation_configs
        semantic_generation_config = BarkSemanticGenerationConfig(semantic_vocab_size=0)
        coarse_generation_config = BarkCoarseGenerationConfig(n_coarse_codebooks=config.n_codes_given)
        fine_generation_config = BarkFineGenerationConfig(
            max_fine_history_length=config.block_size // 2,
            max_fine_input_length=config.block_size,
            n_fine_codebooks=config.n_codes_total,
        )
        codebook_size = config.vocab_size - 1

        model.generate(
            input_ids,
            history_prompt=None,
            temperature=None,
            semantic_generation_config=semantic_generation_config,
            coarse_generation_config=coarse_generation_config,
            fine_generation_config=fine_generation_config,
            codebook_size=codebook_size,
        )

        model.generate(
            input_ids,
            history_prompt=None,
            temperature=0.7,
            semantic_generation_config=semantic_generation_config,
            coarse_generation_config=coarse_generation_config,
            fine_generation_config=fine_generation_config,
            codebook_size=codebook_size,
        )

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["codebook_idx", "input_ids"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

    def test_model_common_attributes(self):
        # one embedding layer per codebook
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings()[0], (torch.nn.Embedding))
            model.set_input_embeddings(
                torch.nn.ModuleList([torch.nn.Embedding(10, 10) for _ in range(config.n_codes_total)])
            )
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x[0], torch.nn.Linear))

    def test_resize_tokens_embeddings(self):
        # resizing tokens_embeddings of a ModuleList
        original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed_list = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings_list = [model_embed.weight.clone() for model_embed in model_embed_list]

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed_list = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)

            # Check that it actually resizes the embeddings matrix for each codebook
            for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list):
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed_list = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list):
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)

            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            # only check for the first embedding matrix
            models_equal = True
            for p1, p2 in zip(cloned_embeddings_list[0], model_embed_list[0].weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

    def test_resize_embeddings_untied(self):
        # resizing tokens_embeddings of a ModuleList
        original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds_list = model.get_output_embeddings()

            for output_embeds in output_embeds_list:
                self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)

                # Check bias if present
                if output_embeds.bias is not None:
                    self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds_list = model.get_output_embeddings()

            for output_embeds in output_embeds_list:
                self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
                # Check bias if present
                if output_embeds.bias is not None:
                    self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))


@require_torch
class BarkModelIntegrationTests(unittest.TestCase):
    @cached_property
    def model(self):
        return BarkModel.from_pretrained("suno/bark").to(torch_device)

    @cached_property
    def processor(self):
        return BarkProcessor.from_pretrained("suno/bark")

    @cached_property
    def inputs(self):
        input_ids = self.processor("In the light of the moon, a little egg lay on a leaf", voice_preset="en_speaker_6")

        input_ids = input_ids.to(torch_device)

        return input_ids

    @cached_property
    def semantic_generation_config(self):
        semantic_generation_config = BarkSemanticGenerationConfig(**self.model.generation_config.semantic_config)
        return semantic_generation_config

    @cached_property
    def coarse_generation_config(self):
        coarse_generation_config = BarkCoarseGenerationConfig(**self.model.generation_config.coarse_acoustics_config)
        return coarse_generation_config

    @cached_property
    def fine_generation_config(self):
        fine_generation_config = BarkFineGenerationConfig(**self.model.generation_config.fine_acoustics_config)
        return fine_generation_config

    @slow
    def test_generate_semantic(self):
        input_ids = self.inputs

        # fmt: off
        # check first ids
        expected_output_ids = [7363, 321, 41, 1461, 6915, 952, 326, 41, 41, 927,]
        # fmt: on

        # greedy decoding
        with torch.no_grad():
            output_ids = self.model.semantic.generate(
                **input_ids,
                do_sample=False,
                temperature=1.0,
                semantic_generation_config=self.semantic_generation_config,
            )

        self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids)

    @slow
    def test_generate_coarse(self):
        input_ids = self.inputs

        history_prompt = input_ids["history_prompt"]

        # fmt: off
        # check first ids
        expected_output_ids = [11018, 11391, 10651, 11418, 10857, 11620, 10642, 11366, 10312, 11528, 10531, 11516, 10474, 11051, 10524, 11051, ]
        # fmt: on

        with torch.no_grad():
            output_ids = self.model.semantic.generate(
                **input_ids,
                do_sample=False,
                temperature=1.0,
                semantic_generation_config=self.semantic_generation_config,
            )

            output_ids = self.model.coarse_acoustics.generate(
                output_ids,
                history_prompt=history_prompt,
                do_sample=False,
                temperature=1.0,
                semantic_generation_config=self.semantic_generation_config,
                coarse_generation_config=self.coarse_generation_config,
                codebook_size=self.model.generation_config.codebook_size,
            )

        self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids)

    @slow
    def test_generate_fine(self):
        input_ids = self.inputs

        history_prompt = input_ids["history_prompt"]

        # fmt: off
        expected_output_ids = [
            [1018, 651, 857, 642, 312, 531, 474, 524, 524, 776,],
            [367, 394, 596, 342, 504, 492, 27, 27, 822, 822,],
            [961, 955, 221, 955, 955, 686, 939, 939, 479, 176,],
            [638, 365, 218, 944, 853, 363, 639, 22, 884, 456,],
            [302, 912, 524, 38, 174, 209, 879, 23, 910, 227,],
            [440, 673, 861, 666, 372, 558, 49, 172, 232, 342,],
            [244, 358, 123, 356, 586, 520, 499, 877, 542, 637,],
            [806, 685, 905, 848, 803, 810, 921, 208, 625, 203,],
        ]
        # fmt: on

        with torch.no_grad():
            output_ids = self.model.semantic.generate(
                **input_ids,
                do_sample=False,
                temperature=1.0,
                semantic_generation_config=self.semantic_generation_config,
            )

            output_ids = self.model.coarse_acoustics.generate(
                output_ids,
                history_prompt=history_prompt,
                do_sample=False,
                temperature=1.0,
                semantic_generation_config=self.semantic_generation_config,
                coarse_generation_config=self.coarse_generation_config,
                codebook_size=self.model.generation_config.codebook_size,
            )

            # greedy decoding
            output_ids = self.model.fine_acoustics.generate(
                output_ids,
                history_prompt=history_prompt,
                temperature=None,
                semantic_generation_config=self.semantic_generation_config,
                coarse_generation_config=self.coarse_generation_config,
                fine_generation_config=self.fine_generation_config,
                codebook_size=self.model.generation_config.codebook_size,
            )

        self.assertListEqual(output_ids[0, :, : len(expected_output_ids[0])].tolist(), expected_output_ids)

    @slow
    def test_generate_end_to_end(self):
        input_ids = self.inputs

        with torch.no_grad():
            self.model.generate(**input_ids)
            self.model.generate(**{key: val for (key, val) in input_ids.items() if key != "history_prompt"})

    @slow
    def test_generate_end_to_end_with_args(self):
        input_ids = self.inputs

        with torch.no_grad():
            self.model.generate(**input_ids, do_sample=True, temperature=0.6, penalty_alpha=0.6)
            self.model.generate(**input_ids, do_sample=True, temperature=0.6, num_beams=4)

    @slow
    def test_generate_end_to_end_with_sub_models_args(self):
        input_ids = self.inputs

        with torch.no_grad():
            self.model.generate(
                **input_ids, do_sample=False, temperature=1.0, coarse_do_sample=True, coarse_temperature=0.7
            )
            self.model.generate(
                **input_ids,
                do_sample=False,
                temperature=1.0,
                coarse_do_sample=True,
                coarse_temperature=0.7,
                fine_temperature=0.3,
            )
            self.model.generate(
                **input_ids,
                do_sample=True,
                temperature=0.6,
                penalty_alpha=0.6,
                semantic_temperature=0.9,
                coarse_temperature=0.2,
                fine_temperature=0.1,
            )

    @require_torch_gpu
    @slow
    def test_generate_end_to_end_with_offload(self):
        input_ids = self.inputs

        with torch.no_grad():
            # standard generation
            output_with_no_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0)

            torch.cuda.empty_cache()

            memory_before_offload = torch.cuda.memory_allocated()
            model_memory_footprint = self.model.get_memory_footprint()

            # activate cpu offload
            self.model.enable_cpu_offload()

            memory_after_offload = torch.cuda.memory_allocated()

            # checks if the model have been offloaded

            # CUDA memory usage after offload should be near 0, leaving room to small differences
            room_for_difference = 1.1
            self.assertGreater(
                (memory_before_offload - model_memory_footprint) * room_for_difference, memory_after_offload
            )

            # checks if device is the correct one
            self.assertEqual(self.model.device.type, torch_device)

            # checks if hooks exist
            self.assertTrue(hasattr(self.model.semantic, "_hf_hook"))

            # output with cpu offload
            output_with_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0)

        # checks if same output
        self.assertListEqual(output_with_no_offload.tolist(), output_with_offload.tolist())