File size: 17,566 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile

from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError

import transformers
from transformers import (
    CONFIG_MAPPING,
    FEATURE_EXTRACTOR_MAPPING,
    PROCESSOR_MAPPING,
    TOKENIZER_MAPPING,
    AutoConfig,
    AutoFeatureExtractor,
    AutoProcessor,
    AutoTokenizer,
    BertTokenizer,
    ProcessorMixin,
    Wav2Vec2Config,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2Processor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available


sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))

from test_module.custom_configuration import CustomConfig  # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor  # noqa E402
from test_module.custom_processing import CustomProcessor  # noqa E402
from test_module.custom_tokenization import CustomTokenizer  # noqa E402


SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures")


class AutoFeatureExtractorTest(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

    def test_processor_from_model_shortcut(self):
        processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_repo(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config()
            processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")

            # save in new folder
            model_config.save_pretrained(tmpdirname)
            processor.save_pretrained(tmpdirname)

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_extractor_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # copy relevant files
            copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_feat_extr_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in tokenizer
            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_tokenizer_processor_class(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            feature_extractor = Wav2Vec2FeatureExtractor()
            tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")

            processor = Wav2Vec2Processor(feature_extractor, tokenizer)

            # save in new folder
            processor.save_pretrained(tmpdirname)

            # drop `processor_class` in feature extractor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f:
                config_dict = json.load(f)
                config_dict.pop("processor_class")

            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write(json.dumps(config_dict))

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_processor_from_local_directory_from_model_config(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
            model_config.save_pretrained(tmpdirname)
            # copy relevant files
            copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
            # create emtpy sample processor
            with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
                f.write("{}")

            processor = AutoProcessor.from_pretrained(tmpdirname)

        self.assertIsInstance(processor, Wav2Vec2Processor)

    def test_from_pretrained_dynamic_processor(self):
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=False
            )

        processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True)
        self.assertTrue(processor.special_attribute_present)
        self.assertEqual(processor.__class__.__name__, "NewProcessor")

        feature_extractor = processor.feature_extractor
        self.assertTrue(feature_extractor.special_attribute_present)
        self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")

        tokenizer = processor.tokenizer
        self.assertTrue(tokenizer.special_attribute_present)
        if is_tokenizers_available():
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")

            # Test we can also load the slow version
            new_processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False
            )
            new_tokenizer = new_processor.tokenizer
            self.assertTrue(new_tokenizer.special_attribute_present)
            self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer")
        else:
            self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")

    def test_new_processor_registration(self):
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
            AutoProcessor.register(CustomConfig, CustomProcessor)
            # Trying to register something existing in the Transformers library will raise an error
            with self.assertRaises(ValueError):
                AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor)

            # Now that the config is registered, it can be used as any other config with the auto-API
            feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

            with tempfile.TemporaryDirectory() as tmp_dir:
                vocab_file = os.path.join(tmp_dir, "vocab.txt")
                with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                    vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
                tokenizer = CustomTokenizer(vocab_file)

            processor = CustomProcessor(feature_extractor, tokenizer)

            with tempfile.TemporaryDirectory() as tmp_dir:
                processor.save_pretrained(tmp_dir)
                new_processor = AutoProcessor.from_pretrained(tmp_dir)
                self.assertIsInstance(new_processor, CustomProcessor)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
                del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]
            if CustomConfig in PROCESSOR_MAPPING._extra_content:
                del PROCESSOR_MAPPING._extra_content[CustomConfig]

    def test_from_pretrained_dynamic_processor_conflict(self):
        class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
            special_attribute_present = False

        class NewTokenizer(BertTokenizer):
            special_attribute_present = False

        class NewProcessor(ProcessorMixin):
            feature_extractor_class = "AutoFeatureExtractor"
            tokenizer_class = "AutoTokenizer"
            special_attribute_present = False

        try:
            AutoConfig.register("custom", CustomConfig)
            AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
            AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
            AutoProcessor.register(CustomConfig, NewProcessor)
            # If remote code is not set, the default is to use local classes.
            processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertFalse(processor.special_attribute_present)
            self.assertFalse(processor.feature_extractor.special_attribute_present)
            self.assertFalse(processor.tokenizer.special_attribute_present)

            # If remote code is disabled, we load the local ones.
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=False
            )
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertFalse(processor.special_attribute_present)
            self.assertFalse(processor.feature_extractor.special_attribute_present)
            self.assertFalse(processor.tokenizer.special_attribute_present)

            # If remote is enabled, we load from the Hub.
            processor = AutoProcessor.from_pretrained(
                "hf-internal-testing/test_dynamic_processor", trust_remote_code=True
            )
            self.assertEqual(processor.__class__.__name__, "NewProcessor")
            self.assertTrue(processor.special_attribute_present)
            self.assertTrue(processor.feature_extractor.special_attribute_present)
            self.assertTrue(processor.tokenizer.special_attribute_present)

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
                del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
            if CustomConfig in TOKENIZER_MAPPING._extra_content:
                del TOKENIZER_MAPPING._extra_content[CustomConfig]
            if CustomConfig in PROCESSOR_MAPPING._extra_content:
                del PROCESSOR_MAPPING._extra_content[CustomConfig]

    def test_auto_processor_creates_tokenizer(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
        self.assertEqual(processor.__class__.__name__, "BertTokenizerFast")

    def test_auto_processor_creates_image_processor(self):
        processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
        self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor")


@is_staging_test
class ProcessorPushToHubTester(unittest.TestCase):
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-processor")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="valid_org/test-processor-org")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="test-dynamic-processor")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor"), push_to_hub=True, use_auth_token=self._token
            )

            new_processor = Wav2Vec2Processor.from_pretrained(f"{USER}/test-processor")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

    def test_push_to_hub_in_organization(self):
        processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            processor.save_pretrained(
                os.path.join(tmp_dir, "test-processor-org"),
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_processor = Wav2Vec2Processor.from_pretrained("valid_org/test-processor-org")
            for k, v in processor.feature_extractor.__dict__.items():
                self.assertEqual(v, getattr(new_processor.feature_extractor, k))
            self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())

    def test_push_to_hub_dynamic_processor(self):
        CustomFeatureExtractor.register_for_auto_class()
        CustomTokenizer.register_for_auto_class()
        CustomProcessor.register_for_auto_class()

        feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)

        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = CustomTokenizer(vocab_file)

        processor = CustomProcessor(feature_extractor, tokenizer)

        with tempfile.TemporaryDirectory() as tmp_dir:
            create_repo(f"{USER}/test-dynamic-processor", token=self._token)
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-processor", token=self._token)
            processor.save_pretrained(tmp_dir)

            # This has added the proper auto_map field to the feature extractor config
            self.assertDictEqual(
                processor.feature_extractor.auto_map,
                {
                    "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # This has added the proper auto_map field to the tokenizer config
            with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
                tokenizer_config = json.load(f)
            self.assertDictEqual(
                tokenizer_config["auto_map"],
                {
                    "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
                    "AutoProcessor": "custom_processing.CustomProcessor",
                },
            )

            # The code has been copied from fixtures
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py")))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py")))

            repo.push_to_hub()

        new_processor = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=True)
        # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
        self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")