File size: 11,885 Bytes
817809c
 
85e469d
05cb438
85e469d
 
 
a63daec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e469d
 
 
 
 
69fe46f
85e469d
 
 
69fe46f
85e469d
 
58b25bf
a63daec
85e469d
 
58b25bf
a8bd039
58b25bf
85e469d
 
 
58b25bf
85e469d
 
 
 
 
 
 
 
58b25bf
85e469d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7411cee
 
85e469d
 
 
 
7411cee
 
a8bd039
817809c
85e469d
 
a8bd039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7411cee
08d32ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fe46f
 
 
 
 
 
 
 
7411cee
 
 
 
 
 
 
 
85e469d
817809c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import pandas as pd
import numpy as np
from search import search_images_by_text, get_similar_images, search_images_by_image
import requests
from io import BytesIO

def create_collection_url(row):
    base_url = "https://www.vogue.com/fashion-shows/"
    season = str(row["season"]).lower()
    year = str(row["year"])
    category = str(row["category"]).lower() if pd.notna(row["category"]) and row["category"] and str(row["category"]).lower() != "nan" else None
    designer = str(row["designer"]).lower().replace(" ", "-")
    
    # Add city if available
    city = str(row["city"]).lower().replace(" ", "-") if pd.notna(row["city"]) and row["city"] and str(row["city"]).lower() != "nan" else None
    
    if pd.isna(category) or category is None or category == "nan":
        if city:
            return f"{base_url}{city}-{season}-{year}/{designer}"
        else:
            return f"{base_url}{season}-{year}/{designer}"
    else:
        if city:
            return f"{base_url}{city}-{season}-{year}-{category}/{designer}"
        else:
            return f"{base_url}{season}-{year}-{category}/{designer}"

import requests
from io import BytesIO
#@st.cache_data(show_spinner="Loading FashionDB...")
def load_data_hf():
    # Load the Parquet file directly from Hugging Face
    df_url = "https://huggingface.co/datasets/traopia/vogue-runway/resolve/main/VogueRunway.parquet"
    df = pd.read_parquet(df_url)

    # Load the .npy file using requests
    npy_url = "https://huggingface.co/datasets/traopia/vogue-runway/resolve/main/VogueRunway_image.npy"
    response = requests.get(npy_url)
    response.raise_for_status()  # Raise error if download fails
    embeddings = np.load(BytesIO(response.content))
    df['collection'] = df.apply(create_collection_url, axis=1)
    return df, embeddings




df, embeddings = load_data_hf()

# Filter and search
def filter_and_search(fashion_house, category, season, start_year, end_year, query):
    filtered = df.copy()

    if fashion_house:
        filtered = filtered[filtered['designer'].isin(fashion_house)]
    if category:
        filtered = filtered[filtered['category'].isin(category)]
    if season:
        filtered = filtered[filtered['season'].isin(season)]
    filtered = filtered[(filtered['year'] >= start_year) & (filtered['year'] <= end_year)]

    if query:
        results = search_images_by_text(query, filtered, embeddings)
    else:
        results = filtered.head(30)
    
    image_urls = results["url"].tolist()
    metadata = results.to_dict(orient="records")
    return image_urls, metadata

# Display metadata and similar
def show_metadata(idx, metadata):
    item = metadata[idx]
    out = ""
    for field in ["designer", "season", "year", "category"]:
        if field in item and pd.notna(item[field]):
            out += f"**{field.title()}**: {item[field]}\n"
    if 'collection' in item and pd.notna(item['collection']):
        out += f"\n[View Collection]({item['collection']})"
    return out

def find_similar(idx, metadata):
    if not isinstance(idx, int) or idx >= len(metadata) or idx < 0:
        return []  # or gr.update(visible=False)
    key = metadata[idx]["key"]
    similar_df = get_similar_images(df, key, embeddings, top_k=5)
    return similar_df["url"].tolist(), similar_df.to_dict(orient="records")




with gr.Blocks() as demo:
    gr.Markdown("# 👗 FashionDB Explorer")

    with gr.Tabs():
        # TEXT SEARCH TAB
        with gr.Tab("Search by Text"):
            with gr.Row():
                fashion_house = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
                category = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
                season = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
                min_year = int(df['year'].min())
                max_year = int(df['year'].max())
                start_year = gr.Slider(label="Start Year", minimum=min_year, maximum=max_year, value=2000, step=1)
                end_year = gr.Slider(label="End Year", minimum=min_year, maximum=max_year, value=2024, step=1)

            query = gr.Textbox(label="Search by text", placeholder="e.g., pink dress")
            search_button = gr.Button("Search")

            result_gallery = gr.Gallery(label="Search Results", columns=5, height="auto")
            metadata_output = gr.Markdown()
            reference_image = gr.Image(label="Reference Image", interactive=False)
            similar_gallery = gr.Gallery(label="Similar Images", columns=5, height="auto")

            metadata_state = gr.State([])
            selected_idx = gr.Number(value=0, visible=False)

            def handle_search(fh, cat, sea, sy, ey, q):
                imgs, meta = filter_and_search(fh, cat, sea, sy, ey, q)
                return imgs, meta, "", [], None

            search_button.click(
                handle_search,
                inputs=[fashion_house, category, season, start_year, end_year, query],
                outputs=[result_gallery, metadata_state, metadata_output, similar_gallery, reference_image]
            )

            def handle_click(evt: gr.SelectData, metadata):
                idx = evt.index
                md = show_metadata(idx, metadata)
                img_path = metadata[idx]["url"]
                return idx, md, img_path

            result_gallery.select(
                handle_click,
                inputs=[metadata_state],
                outputs=[selected_idx, metadata_output, reference_image]
            )

            def show_similar(idx, metadata):
                if idx is None or not str(idx).isdigit():
                    return [], []
                return find_similar(int(idx), metadata)

            similar_metadata_state = gr.State()
            similar_metadata_output = gr.Markdown()

            show_similar_button = gr.Button("Show Similar Images")
            show_similar_button.click(
                show_similar,
                inputs=[selected_idx, metadata_state],
                outputs=[similar_gallery, similar_metadata_state]
            )

            def handle_similar_click(evt: gr.SelectData, metadata):
                idx = evt.index
                md = show_metadata(idx, metadata)
                img_path = metadata[idx]["url"]
                return idx, md, img_path

            similar_gallery.select(
                handle_similar_click,
                inputs=[similar_metadata_state],
                outputs=[selected_idx, similar_metadata_output, reference_image]
            )

        # IMAGE SEARCH TAB
        with gr.Tab("Search by Image"):
            with gr.Row():
                fashion_house_img = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
                category_img = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
                season_img = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
                start_year_img = gr.Slider(label="Start Year", minimum=min_year, maximum=max_year, value=2000, step=1)
                end_year_img = gr.Slider(label="End Year", minimum=min_year, maximum=max_year, value=2024, step=1)

            uploaded_image = gr.Image(label="Upload an image", type="pil")
            search_by_image_button = gr.Button("Search by Image")

            uploaded_result_gallery = gr.Gallery(label="Search Results by Image", columns=5, height="auto")
            uploaded_metadata_state = gr.State([])
            uploaded_metadata_output = gr.Markdown()
            uploaded_reference_image = gr.Image(label="Reference Image", interactive=False)

            def handle_search_by_image(image, fh, cat, sea, sy, ey):
                if image is None:
                    return [], "Please upload an image first.", None
                # Apply filters
                filtered_df = df.copy()
                if fh: filtered_df = filtered_df[filtered_df["designer"].isin(fh)]
                if cat: filtered_df = filtered_df[filtered_df["category"].isin(cat)]
                if sea: filtered_df = filtered_df[filtered_df["season"].isin(sea)]
                filtered_df = filtered_df[(filtered_df["year"] >= sy) & (filtered_df["year"] <= ey)]

                results_df = search_images_by_image(image, filtered_df, embeddings)
                images = results_df['url'].tolist()
                metadata = results_df.to_dict(orient="records")
                return images, metadata, ""

            search_by_image_button.click(
                handle_search_by_image,
                inputs=[uploaded_image, fashion_house_img, category_img, season_img, start_year_img, end_year_img],
                outputs=[uploaded_result_gallery, uploaded_metadata_state, uploaded_metadata_output]
            )

            uploaded_selected_idx = gr.Number(visible=False)

            def handle_uploaded_click(evt: gr.SelectData, metadata):
                idx = evt.index
                md = show_metadata(idx, metadata)
                img_path = metadata[idx]["url"]
                return idx, md, img_path

            uploaded_result_gallery.select(
                handle_uploaded_click,
                inputs=[uploaded_metadata_state],
                outputs=[uploaded_selected_idx, uploaded_metadata_output, uploaded_reference_image]
            )

                        # SIMILAR IMAGE SEARCH FOR IMAGE TAB
            uploaded_similar_gallery = gr.Gallery(label="Similar Images", columns=5, height="auto")
            uploaded_similar_metadata_state = gr.State([])
            uploaded_similar_metadata_output = gr.Markdown()

            uploaded_show_similar_button = gr.Button("Show Similar Images")

            def show_similar_uploaded(idx, metadata):
                if idx is None or not str(idx).isdigit():
                    return [], []
                return find_similar(int(idx), metadata)

            uploaded_show_similar_button.click(
                show_similar_uploaded,
                inputs=[uploaded_selected_idx, uploaded_metadata_state],
                outputs=[uploaded_similar_gallery, uploaded_similar_metadata_state]
            )

            def handle_uploaded_similar_click(evt: gr.SelectData, metadata):
                idx = evt.index
                md = show_metadata(idx, metadata)
                img_path = metadata[idx]["url"]
                return idx, md, img_path

            uploaded_similar_gallery.select(
                handle_uploaded_similar_click,
                inputs=[uploaded_similar_metadata_state],
                outputs=[uploaded_selected_idx, uploaded_similar_metadata_output, uploaded_reference_image]
            )

            uploaded_back_button = gr.Button("Back to Initial Uploaded Search")

            def back_to_uploaded_home():
                return [], "", None

            uploaded_back_button.click(
                back_to_uploaded_home,
                outputs=[uploaded_similar_gallery, uploaded_similar_metadata_output, uploaded_reference_image]
            )

        with gr.Tab("Query on FashionDB"):
            with gr.Row():
                gr.Markdown(
                    "### 🔗 Query FashionDB SPARQL Endpoint\n"
                    "[Click here to open the SPARQL endpoint](https://fashionwiki.wikibase.cloud/query/)",
                    elem_id="sparql-link"
                )

    back_button = gr.Button("Back to Home")

    def back_to_home():
        return [], "", None  # clear similar_gallery, metadata_output, reference image

    back_button.click(
        back_to_home,
        outputs=[similar_gallery, similar_metadata_output, reference_image]
    )

demo.launch()