Spaces:
Sleeping
Sleeping
File size: 11,885 Bytes
817809c 85e469d 05cb438 85e469d a63daec 85e469d 69fe46f 85e469d 69fe46f 85e469d 58b25bf a63daec 85e469d 58b25bf a8bd039 58b25bf 85e469d 58b25bf 85e469d 58b25bf 85e469d 7411cee 85e469d 7411cee a8bd039 817809c 85e469d a8bd039 7411cee 08d32ab 69fe46f 7411cee 85e469d 817809c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import pandas as pd
import numpy as np
from search import search_images_by_text, get_similar_images, search_images_by_image
import requests
from io import BytesIO
def create_collection_url(row):
base_url = "https://www.vogue.com/fashion-shows/"
season = str(row["season"]).lower()
year = str(row["year"])
category = str(row["category"]).lower() if pd.notna(row["category"]) and row["category"] and str(row["category"]).lower() != "nan" else None
designer = str(row["designer"]).lower().replace(" ", "-")
# Add city if available
city = str(row["city"]).lower().replace(" ", "-") if pd.notna(row["city"]) and row["city"] and str(row["city"]).lower() != "nan" else None
if pd.isna(category) or category is None or category == "nan":
if city:
return f"{base_url}{city}-{season}-{year}/{designer}"
else:
return f"{base_url}{season}-{year}/{designer}"
else:
if city:
return f"{base_url}{city}-{season}-{year}-{category}/{designer}"
else:
return f"{base_url}{season}-{year}-{category}/{designer}"
import requests
from io import BytesIO
#@st.cache_data(show_spinner="Loading FashionDB...")
def load_data_hf():
# Load the Parquet file directly from Hugging Face
df_url = "https://huggingface.co/datasets/traopia/vogue-runway/resolve/main/VogueRunway.parquet"
df = pd.read_parquet(df_url)
# Load the .npy file using requests
npy_url = "https://huggingface.co/datasets/traopia/vogue-runway/resolve/main/VogueRunway_image.npy"
response = requests.get(npy_url)
response.raise_for_status() # Raise error if download fails
embeddings = np.load(BytesIO(response.content))
df['collection'] = df.apply(create_collection_url, axis=1)
return df, embeddings
df, embeddings = load_data_hf()
# Filter and search
def filter_and_search(fashion_house, category, season, start_year, end_year, query):
filtered = df.copy()
if fashion_house:
filtered = filtered[filtered['designer'].isin(fashion_house)]
if category:
filtered = filtered[filtered['category'].isin(category)]
if season:
filtered = filtered[filtered['season'].isin(season)]
filtered = filtered[(filtered['year'] >= start_year) & (filtered['year'] <= end_year)]
if query:
results = search_images_by_text(query, filtered, embeddings)
else:
results = filtered.head(30)
image_urls = results["url"].tolist()
metadata = results.to_dict(orient="records")
return image_urls, metadata
# Display metadata and similar
def show_metadata(idx, metadata):
item = metadata[idx]
out = ""
for field in ["designer", "season", "year", "category"]:
if field in item and pd.notna(item[field]):
out += f"**{field.title()}**: {item[field]}\n"
if 'collection' in item and pd.notna(item['collection']):
out += f"\n[View Collection]({item['collection']})"
return out
def find_similar(idx, metadata):
if not isinstance(idx, int) or idx >= len(metadata) or idx < 0:
return [] # or gr.update(visible=False)
key = metadata[idx]["key"]
similar_df = get_similar_images(df, key, embeddings, top_k=5)
return similar_df["url"].tolist(), similar_df.to_dict(orient="records")
with gr.Blocks() as demo:
gr.Markdown("# 👗 FashionDB Explorer")
with gr.Tabs():
# TEXT SEARCH TAB
with gr.Tab("Search by Text"):
with gr.Row():
fashion_house = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
category = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
season = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
min_year = int(df['year'].min())
max_year = int(df['year'].max())
start_year = gr.Slider(label="Start Year", minimum=min_year, maximum=max_year, value=2000, step=1)
end_year = gr.Slider(label="End Year", minimum=min_year, maximum=max_year, value=2024, step=1)
query = gr.Textbox(label="Search by text", placeholder="e.g., pink dress")
search_button = gr.Button("Search")
result_gallery = gr.Gallery(label="Search Results", columns=5, height="auto")
metadata_output = gr.Markdown()
reference_image = gr.Image(label="Reference Image", interactive=False)
similar_gallery = gr.Gallery(label="Similar Images", columns=5, height="auto")
metadata_state = gr.State([])
selected_idx = gr.Number(value=0, visible=False)
def handle_search(fh, cat, sea, sy, ey, q):
imgs, meta = filter_and_search(fh, cat, sea, sy, ey, q)
return imgs, meta, "", [], None
search_button.click(
handle_search,
inputs=[fashion_house, category, season, start_year, end_year, query],
outputs=[result_gallery, metadata_state, metadata_output, similar_gallery, reference_image]
)
def handle_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
img_path = metadata[idx]["url"]
return idx, md, img_path
result_gallery.select(
handle_click,
inputs=[metadata_state],
outputs=[selected_idx, metadata_output, reference_image]
)
def show_similar(idx, metadata):
if idx is None or not str(idx).isdigit():
return [], []
return find_similar(int(idx), metadata)
similar_metadata_state = gr.State()
similar_metadata_output = gr.Markdown()
show_similar_button = gr.Button("Show Similar Images")
show_similar_button.click(
show_similar,
inputs=[selected_idx, metadata_state],
outputs=[similar_gallery, similar_metadata_state]
)
def handle_similar_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
img_path = metadata[idx]["url"]
return idx, md, img_path
similar_gallery.select(
handle_similar_click,
inputs=[similar_metadata_state],
outputs=[selected_idx, similar_metadata_output, reference_image]
)
# IMAGE SEARCH TAB
with gr.Tab("Search by Image"):
with gr.Row():
fashion_house_img = gr.Dropdown(label="Fashion House", choices=sorted(df["designer"].dropna().unique()), multiselect=True)
category_img = gr.Dropdown(label="Category", choices=sorted(df["category"].dropna().unique()), multiselect=True)
season_img = gr.Dropdown(label="Season", choices=sorted(df["season"].dropna().unique()), multiselect=True)
start_year_img = gr.Slider(label="Start Year", minimum=min_year, maximum=max_year, value=2000, step=1)
end_year_img = gr.Slider(label="End Year", minimum=min_year, maximum=max_year, value=2024, step=1)
uploaded_image = gr.Image(label="Upload an image", type="pil")
search_by_image_button = gr.Button("Search by Image")
uploaded_result_gallery = gr.Gallery(label="Search Results by Image", columns=5, height="auto")
uploaded_metadata_state = gr.State([])
uploaded_metadata_output = gr.Markdown()
uploaded_reference_image = gr.Image(label="Reference Image", interactive=False)
def handle_search_by_image(image, fh, cat, sea, sy, ey):
if image is None:
return [], "Please upload an image first.", None
# Apply filters
filtered_df = df.copy()
if fh: filtered_df = filtered_df[filtered_df["designer"].isin(fh)]
if cat: filtered_df = filtered_df[filtered_df["category"].isin(cat)]
if sea: filtered_df = filtered_df[filtered_df["season"].isin(sea)]
filtered_df = filtered_df[(filtered_df["year"] >= sy) & (filtered_df["year"] <= ey)]
results_df = search_images_by_image(image, filtered_df, embeddings)
images = results_df['url'].tolist()
metadata = results_df.to_dict(orient="records")
return images, metadata, ""
search_by_image_button.click(
handle_search_by_image,
inputs=[uploaded_image, fashion_house_img, category_img, season_img, start_year_img, end_year_img],
outputs=[uploaded_result_gallery, uploaded_metadata_state, uploaded_metadata_output]
)
uploaded_selected_idx = gr.Number(visible=False)
def handle_uploaded_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
img_path = metadata[idx]["url"]
return idx, md, img_path
uploaded_result_gallery.select(
handle_uploaded_click,
inputs=[uploaded_metadata_state],
outputs=[uploaded_selected_idx, uploaded_metadata_output, uploaded_reference_image]
)
# SIMILAR IMAGE SEARCH FOR IMAGE TAB
uploaded_similar_gallery = gr.Gallery(label="Similar Images", columns=5, height="auto")
uploaded_similar_metadata_state = gr.State([])
uploaded_similar_metadata_output = gr.Markdown()
uploaded_show_similar_button = gr.Button("Show Similar Images")
def show_similar_uploaded(idx, metadata):
if idx is None or not str(idx).isdigit():
return [], []
return find_similar(int(idx), metadata)
uploaded_show_similar_button.click(
show_similar_uploaded,
inputs=[uploaded_selected_idx, uploaded_metadata_state],
outputs=[uploaded_similar_gallery, uploaded_similar_metadata_state]
)
def handle_uploaded_similar_click(evt: gr.SelectData, metadata):
idx = evt.index
md = show_metadata(idx, metadata)
img_path = metadata[idx]["url"]
return idx, md, img_path
uploaded_similar_gallery.select(
handle_uploaded_similar_click,
inputs=[uploaded_similar_metadata_state],
outputs=[uploaded_selected_idx, uploaded_similar_metadata_output, uploaded_reference_image]
)
uploaded_back_button = gr.Button("Back to Initial Uploaded Search")
def back_to_uploaded_home():
return [], "", None
uploaded_back_button.click(
back_to_uploaded_home,
outputs=[uploaded_similar_gallery, uploaded_similar_metadata_output, uploaded_reference_image]
)
with gr.Tab("Query on FashionDB"):
with gr.Row():
gr.Markdown(
"### 🔗 Query FashionDB SPARQL Endpoint\n"
"[Click here to open the SPARQL endpoint](https://fashionwiki.wikibase.cloud/query/)",
elem_id="sparql-link"
)
back_button = gr.Button("Back to Home")
def back_to_home():
return [], "", None # clear similar_gallery, metadata_output, reference image
back_button.click(
back_to_home,
outputs=[similar_gallery, similar_metadata_output, reference_image]
)
demo.launch() |