File size: 24,689 Bytes
5309153 941f5e0 5309153 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data
from utils import COLORS
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
daily_stats = []
dates = sorted(historical_df['date'].unique())
for date in dates:
date_data = historical_df[historical_df['date'] == date]
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
amd_total = amd_passed + amd_failed + amd_skipped
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
daily_stats.append({
'date': date,
'amd_failure_rate': amd_failure_rate,
'nvidia_failure_rate': nvidia_failure_rate,
'amd_passed': amd_passed,
'amd_failed': amd_failed,
'amd_skipped': amd_skipped,
'nvidia_passed': nvidia_passed,
'nvidia_failed': nvidia_failed,
'nvidia_skipped': nvidia_skipped
})
failure_rate_data = []
for i, stat in enumerate(daily_stats):
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0
failure_rate_data.extend([
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
])
failure_rate_df = pd.DataFrame(failure_rate_data)
amd_data = []
for i, stat in enumerate(daily_stats):
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0
amd_data.extend([
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
amd_df = pd.DataFrame(amd_data)
nvidia_data = []
for i, stat in enumerate(daily_stats):
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0
nvidia_data.extend([
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
nvidia_df = pd.DataFrame(nvidia_data)
return {
'failure_rates_df': failure_rate_df,
'amd_tests_df': amd_df,
'nvidia_tests_df': nvidia_df,
}
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
if model_data.empty:
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()}
dates = sorted(model_data['date'].unique())
amd_data = []
nvidia_data = []
for i, date in enumerate(dates):
date_data = model_data[model_data['date'] == date]
row = date_data.iloc[0]
amd_passed = row.get('success_amd', 0)
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
amd_skipped = row.get('skipped_amd', 0)
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0)
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0)
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0)
amd_data.extend([
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change},
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change},
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change}
])
nvidia_passed = row.get('success_nvidia', 0)
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
nvidia_skipped = row.get('skipped_nvidia', 0)
if prev_row is not None:
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
else:
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0
nvidia_data.extend([
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed},
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed},
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped}
])
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
if historical_df.empty or 'date' not in historical_df.columns:
# Create empty Plotly figure
empty_fig = go.Figure()
empty_fig.update_layout(
title="No historical data available",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
margin=dict(b=130)
)
return {
'failure_rates': empty_fig,
'amd_tests': empty_fig,
'nvidia_tests': empty_fig
}
daily_stats = []
dates = sorted(historical_df['date'].unique())
for date in dates:
date_data = historical_df[historical_df['date'] == date]
# Calculate failure rates using the same logic as summary_page.py
# This includes ERROR tests in failures and excludes SKIPPED from total
total_amd_tests = 0
total_amd_failures = 0
total_nvidia_tests = 0
total_nvidia_failures = 0
amd_passed = 0
amd_failed = 0
amd_skipped = 0
nvidia_passed = 0
nvidia_failed = 0
nvidia_skipped = 0
for _, row in date_data.iterrows():
amd_stats, nvidia_stats = extract_model_data(row)[:2]
# AMD (matching summary_page.py logic: failed + error, excluding skipped)
amd_total = amd_stats['passed'] + amd_stats['failed'] + amd_stats['error']
if amd_total > 0:
total_amd_tests += amd_total
total_amd_failures += amd_stats['failed'] + amd_stats['error']
# For test counts graphs (these still use the old logic with skipped)
amd_passed += amd_stats['passed']
amd_failed += amd_stats['failed'] + amd_stats['error']
amd_skipped += amd_stats['skipped']
# NVIDIA (matching summary_page.py logic: failed + error, excluding skipped)
nvidia_total = nvidia_stats['passed'] + nvidia_stats['failed'] + nvidia_stats['error']
if nvidia_total > 0:
total_nvidia_tests += nvidia_total
total_nvidia_failures += nvidia_stats['failed'] + nvidia_stats['error']
# For test counts graphs (these still use the old logic with skipped)
nvidia_passed += nvidia_stats['passed']
nvidia_failed += nvidia_stats['failed'] + nvidia_stats['error']
nvidia_skipped += nvidia_stats['skipped']
amd_failure_rate = (total_amd_failures / total_amd_tests * 100) if total_amd_tests > 0 else 0
nvidia_failure_rate = (total_nvidia_failures / total_nvidia_tests * 100) if total_nvidia_tests > 0 else 0
daily_stats.append({
'date': date,
'amd_failure_rate': amd_failure_rate,
'nvidia_failure_rate': nvidia_failure_rate,
'amd_passed': amd_passed,
'amd_failed': amd_failed,
'amd_skipped': amd_skipped,
'nvidia_passed': nvidia_passed,
'nvidia_failed': nvidia_failed,
'nvidia_skipped': nvidia_skipped
})
failure_rate_data = []
for i, stat in enumerate(daily_stats):
amd_change = nvidia_change = 0
if i > 0:
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate']
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate']
failure_rate_data.extend([
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
])
failure_rate_df = pd.DataFrame(failure_rate_data)
amd_data = []
for i, stat in enumerate(daily_stats):
passed_change = failed_change = skipped_change = 0
if i > 0:
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped']
amd_data.extend([
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
amd_df = pd.DataFrame(amd_data)
nvidia_data = []
for i, stat in enumerate(daily_stats):
passed_change = failed_change = skipped_change = 0
if i > 0:
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped']
nvidia_data.extend([
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
])
nvidia_df = pd.DataFrame(nvidia_data)
# Create Plotly figure for failure rates with alternating colors
fig_failure_rates = go.Figure()
# Add NVIDIA line (green line with white markers - Barcelona style)
nvidia_data = failure_rate_df[failure_rate_df['platform'] == 'NVIDIA']
if not nvidia_data.empty:
fig_failure_rates.add_trace(go.Scatter(
x=nvidia_data['date'],
y=nvidia_data['failure_rate'],
mode='lines+markers',
name='NVIDIA',
line=dict(color='#76B900', width=3), # Green line
marker=dict(size=12, color='#FFFFFF', line=dict(color='#76B900', width=2)), # White markers with green border
hovertemplate='<b>NVIDIA</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>'
))
# Add AMD line (red line with dark gray markers - Barcelona style)
amd_data = failure_rate_df[failure_rate_df['platform'] == 'AMD']
if not amd_data.empty:
fig_failure_rates.add_trace(go.Scatter(
x=amd_data['date'],
y=amd_data['failure_rate'],
mode='lines+markers',
name='AMD',
line=dict(color='#ED1C24', width=3), # Red line
marker=dict(size=12, color='#404040', line=dict(color='#ED1C24', width=2)), # Dark gray markers with red border
hovertemplate='<b>AMD</b><br>Date: %{x}<br>Failure Rate: %{y:.2f}%<extra></extra>'
))
fig_failure_rates.update_layout(
title="Overall Failure Rates Over Time",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
title_font_size=20,
legend=dict(
font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)',
orientation="h",
yanchor="bottom",
y=-0.4,
xanchor="center",
x=0.5
),
xaxis=dict(title='Date', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title='Failure Rate (%)', title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified',
margin=dict(b=130)
)
# Create Plotly figure for AMD tests
fig_amd = px.line(
amd_df,
x='date',
y='count',
color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title="AMD Test Results Over Time",
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
)
fig_amd.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig_amd.update_layout(
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
title_font_size=20,
legend=dict(
font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)',
orientation="h",
yanchor="bottom",
y=-0.4,
xanchor="center",
x=0.5
),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified',
margin=dict(b=130)
)
# Create Plotly figure for NVIDIA tests
fig_nvidia = px.line(
nvidia_df,
x='date',
y='count',
color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title="NVIDIA Test Results Over Time",
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
)
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig_nvidia.update_layout(
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
title_font_size=20,
legend=dict(
font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)',
orientation="h",
yanchor="bottom",
y=-0.4,
xanchor="center",
x=0.5
),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified',
margin=dict(b=130)
)
return {
'failure_rates': fig_failure_rates,
'amd_tests': fig_amd,
'nvidia_tests': fig_nvidia
}
def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
if historical_df.empty or 'date' not in historical_df.columns:
# Create empty Plotly figures
empty_fig_amd = go.Figure()
empty_fig_amd.update_layout(
title=f"{model_name.upper()} - AMD Results Over Time",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
margin=dict(b=130)
)
empty_fig_nvidia = go.Figure()
empty_fig_nvidia.update_layout(
title=f"{model_name.upper()} - NVIDIA Results Over Time",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
margin=dict(b=130)
)
return {
'amd_plot': empty_fig_amd,
'nvidia_plot': empty_fig_nvidia
}
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
if model_data.empty:
# Create empty Plotly figures
empty_fig_amd = go.Figure()
empty_fig_amd.update_layout(
title=f"{model_name.upper()} - AMD Results Over Time",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
margin=dict(b=130)
)
empty_fig_nvidia = go.Figure()
empty_fig_nvidia.update_layout(
title=f"{model_name.upper()} - NVIDIA Results Over Time",
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
margin=dict(b=130)
)
return {
'amd_plot': empty_fig_amd,
'nvidia_plot': empty_fig_nvidia
}
dates = sorted(model_data['date'].unique())
amd_data = []
nvidia_data = []
for i, date in enumerate(dates):
date_data = model_data[model_data['date'] == date]
if not date_data.empty:
row = date_data.iloc[0]
amd_passed = row.get('success_amd', 0)
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
amd_skipped = row.get('skipped_amd', 0)
passed_change = failed_change = skipped_change = 0
if i > 0:
prev_date_data = model_data[model_data['date'] == dates[i-1]]
if not prev_date_data.empty:
prev_row = prev_date_data.iloc[0]
prev_amd_passed = prev_row.get('success_amd', 0)
prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0)
prev_amd_skipped = prev_row.get('skipped_amd', 0)
passed_change = amd_passed - prev_amd_passed
failed_change = amd_failed - prev_amd_failed
skipped_change = amd_skipped - prev_amd_skipped
amd_data.extend([
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change},
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change},
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
])
nvidia_passed = row.get('success_nvidia', 0)
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
nvidia_skipped = row.get('skipped_nvidia', 0)
nvidia_passed_change = nvidia_failed_change = nvidia_skipped_change = 0
if i > 0:
prev_date_data = model_data[model_data['date'] == dates[i-1]]
if not prev_date_data.empty:
prev_row = prev_date_data.iloc[0]
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
nvidia_passed_change = nvidia_passed - prev_nvidia_passed
nvidia_failed_change = nvidia_failed - prev_nvidia_failed
nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped
nvidia_data.extend([
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change},
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change},
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change}
])
amd_df = pd.DataFrame(amd_data)
nvidia_df = pd.DataFrame(nvidia_data)
# Create Plotly figure for AMD
fig_amd = px.line(
amd_df,
x='date',
y='count',
color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title=f"{model_name.upper()} - AMD Results Over Time",
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
)
fig_amd.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig_amd.update_layout(
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
title_font_size=20,
legend=dict(
font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)',
orientation="h",
yanchor="bottom",
y=-0.4,
xanchor="center",
x=0.5
),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified',
margin=dict(b=130)
)
# Create Plotly figure for NVIDIA
fig_nvidia = px.line(
nvidia_df,
x='date',
y='count',
color='test_type',
color_discrete_map={"Passed": COLORS['passed'], "Failed": COLORS['failed'], "Skipped": COLORS['skipped']},
title=f"{model_name.upper()} - NVIDIA Results Over Time",
labels={'count': 'Number of Tests', 'date': 'Date', 'test_type': 'Test Type'}
)
fig_nvidia.update_traces(mode='lines+markers', marker=dict(size=8), line=dict(width=3))
fig_nvidia.update_layout(
height=500,
font=dict(size=16, color='#CCCCCC'),
paper_bgcolor='#000000',
plot_bgcolor='#1a1a1a',
title_font_size=20,
legend=dict(
font=dict(size=16),
bgcolor='rgba(0,0,0,0.5)',
orientation="h",
yanchor="bottom",
y=-0.4,
xanchor="center",
x=0.5
),
xaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
yaxis=dict(title_font_size=16, tickfont_size=14, gridcolor='#333333', showgrid=True),
hovermode='x unified',
margin=dict(b=130)
)
return {
'amd_plot': fig_amd,
'nvidia_plot': fig_nvidia
} |