File size: 948 Bytes
ebbd6bd
 
 
 
 
 
 
 
 
0b9b1ca
ebbd6bd
482e129
ebbd6bd
482e129
 
 
ebbd6bd
482e129
e94482d
4a57d1b
e94482d
 
51be303
e94482d
7a53495
e94482d
fae15c0
e94482d
 
 
266a8ef
 
 
8d9b961
e94482d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from repo_directory import PitStops
from repo_directory import button
import datetime

YEAR_SELECTED = st.selectbox(
    'Select Year',
    (2023, 2022, 2021, 2020, 2019, 2018))



season_events, events_list = PitStops.get_season_events(YEAR_SELECTED)

RACE_SELECTED =  st.selectbox(
    'Select Race',
    events_list)

event_id = PitStops.get_event_id(season_events, RACE_SELECTED)
df = PitStops.get_pitstops(event_id) #dhl pitstops

race_names_df,  pit_stops_df, drivers_df =  PitStops.load_data()

event_date = PitStops.get_event_date(season_events, RACE_SELECTED)

ergast_pitstops, grandprix = PitStops.get_pitstops_by_date(pit_stops_df,drivers_df,race_names_df,event_date)

df_agg = PitStops.combine_dfs(ergast_pitstops, df)

PitStops.plot_event_ratings(df_agg, grandprix)

PitStops.plot_event_pitstops(df, RACE_SELECTED)

PitStops.plot_full_season_median(YEAR_SELECTED)
PitStops.plot_event_ratings(df_agg, grandprix)