Spaces:
Running
Running
Update prompts (#3)
Browse files* update prompt
* use buster for adding documents
* refactor
* add README for spaces
* add .gitignore and gitattributes
* install buster from main branch
- .gitattributes +35 -0
- .gitignore +5 -0
- README.md +10 -0
- cfg.py +51 -35
- embed_documents.py +12 -48
- gradio_app.py +8 -6
- requirements.txt +1 -1
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.csv
|
2 |
+
*.zip
|
3 |
+
deeplake_store/
|
4 |
+
.DS_Store
|
5 |
+
__pycache__/
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: TowardsAI 🤝 Buster
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.39.0
|
8 |
+
app_file: gradio_app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
cfg.py
CHANGED
@@ -15,20 +15,27 @@ from utils import extract_zip
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
HUB_TOKEN = os.getenv("HUB_TOKEN")
|
20 |
REPO_ID = "jerpint/towardsai-buster-data"
|
21 |
HUB_DB_FILE = "deeplake_store.zip"
|
22 |
-
logger.info(f"Downloading {HUB_DB_FILE} from hub...")
|
23 |
-
hf_hub_download(
|
24 |
-
repo_id=REPO_ID,
|
25 |
-
repo_type="dataset",
|
26 |
-
filename=HUB_DB_FILE,
|
27 |
-
token=HUB_TOKEN,
|
28 |
-
local_dir=".",
|
29 |
-
)
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
buster_cfg = BusterConfig(
|
@@ -90,26 +97,31 @@ A user will submit a question. Respond 'true' if it is valid, respond 'false' if
|
|
90 |
"max_tokens": 3500,
|
91 |
"text_before_docs": (
|
92 |
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
|
|
|
|
93 |
"If the answer is in the documentation, summarize it in a helpful way to the user. "
|
94 |
-
"If
|
95 |
-
"
|
96 |
-
"Here is the documentation: "
|
97 |
"<DOCUMENTS> "
|
98 |
),
|
99 |
"text_after_docs": (
|
100 |
"<\DOCUMENTS>\n"
|
101 |
"REMEMBER:\n"
|
102 |
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
|
|
103 |
"Here are the rules you must follow:\n"
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"
|
|
|
|
|
|
|
110 |
"For example:\n"
|
111 |
"What is the meaning of life for a qa bot?\n"
|
112 |
-
"I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the
|
113 |
"Now answer the following question:\n"
|
114 |
),
|
115 |
},
|
@@ -117,19 +129,23 @@ A user will submit a question. Respond 'true' if it is valid, respond 'false' if
|
|
117 |
|
118 |
# initialize buster with the config in cfg.py (adapt to your needs) ...
|
119 |
# buster_cfg = cfg.buster_cfg
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
)
|
|
|
|
|
|
|
|
|
|
15 |
logger = logging.getLogger(__name__)
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
+
# For authentication
|
19 |
+
USERNAME = os.getenv("BUSTER_USERNAME")
|
20 |
+
PASSWORD = os.getenv("BUSTER_PASSWORD")
|
21 |
|
22 |
HUB_TOKEN = os.getenv("HUB_TOKEN")
|
23 |
REPO_ID = "jerpint/towardsai-buster-data"
|
24 |
HUB_DB_FILE = "deeplake_store.zip"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
if os.path.exists(HUB_DB_FILE):
|
27 |
+
logger.info(f"Using local {HUB_DB_FILE}...")
|
28 |
+
else:
|
29 |
+
logger.info(f"Downloading {HUB_DB_FILE} from hub...")
|
30 |
+
hf_hub_download(
|
31 |
+
repo_id=REPO_ID,
|
32 |
+
repo_type="dataset",
|
33 |
+
filename=HUB_DB_FILE,
|
34 |
+
token=HUB_TOKEN,
|
35 |
+
local_dir=".",
|
36 |
+
)
|
37 |
+
|
38 |
+
extract_zip(zip_file_path=HUB_DB_FILE, output_path="deeplake_store")
|
39 |
|
40 |
|
41 |
buster_cfg = BusterConfig(
|
|
|
97 |
"max_tokens": 3500,
|
98 |
"text_before_docs": (
|
99 |
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
100 |
+
"You are provided information found in the <DOCUMENTS> tag. "
|
101 |
+
"Only respond with infomration inside the <DOCUMENTS> tag. DO NOT use additional information, even if you know the answer. "
|
102 |
"If the answer is in the documentation, summarize it in a helpful way to the user. "
|
103 |
+
"If the documentation does not discuss the topic related to the question, kindly respond that you cannot answer the question because it is not part of your knowledge. "
|
104 |
+
"Here is the information you can use: "
|
|
|
105 |
"<DOCUMENTS> "
|
106 |
),
|
107 |
"text_after_docs": (
|
108 |
"<\DOCUMENTS>\n"
|
109 |
"REMEMBER:\n"
|
110 |
"You are a chatbot assistant answering users' questions about towardsAI content, a blog about applied artificial intelligence (AI)."
|
111 |
+
"You are provided information found in the <DOCUMENTS> tag. "
|
112 |
"Here are the rules you must follow:\n"
|
113 |
+
"* Only respond with infomration inside the <DOCUMENTS> tag. DO NOT providew additional information, even if you know the answer. "
|
114 |
+
"* If the answer is in the documentation, summarize it in a helpful way to the user. "
|
115 |
+
"* If the documentation does not discuss the topic related to the question, kindly respond that you cannot answer the question because it is not part of your knowledge. "
|
116 |
+
"* Only summarize the information in the <DOCUMENTS> tag, do not respond otherwise. "
|
117 |
+
"* Do not refer to the documentation directly, but use the instructions provided within it to answer questions. "
|
118 |
+
"* Do not reference any links, urls or hyperlinks in your answers.\n"
|
119 |
+
"* Make sure to format your answers in Markdown format, including code block and snippets.\n"
|
120 |
+
"* If you do not know the answer to a question, or if it is completely irrelevant to the library usage, simply reply with:\n"
|
121 |
+
"'I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the topics I'm trained on. Is there anything else I can assist you with?'"
|
122 |
"For example:\n"
|
123 |
"What is the meaning of life for a qa bot?\n"
|
124 |
+
"I'm sorry, but I am an AI language model trained to assist with questions related to AI. I cannot answer that question as it is not relevant to the topics I'm trained on. Is there anything else I can assist you with?"
|
125 |
"Now answer the following question:\n"
|
126 |
),
|
127 |
},
|
|
|
129 |
|
130 |
# initialize buster with the config in cfg.py (adapt to your needs) ...
|
131 |
# buster_cfg = cfg.buster_cfg
|
132 |
+
|
133 |
+
|
134 |
+
def setup_buster(buster_cfg):
|
135 |
+
retriever: Retriever = DeepLakeRetriever(**buster_cfg.retriever_cfg)
|
136 |
+
tokenizer = GPTTokenizer(**buster_cfg.tokenizer_cfg)
|
137 |
+
document_answerer: DocumentAnswerer = DocumentAnswerer(
|
138 |
+
completer=ChatGPTCompleter(**buster_cfg.completion_cfg),
|
139 |
+
documents_formatter=DocumentsFormatter(
|
140 |
+
tokenizer=tokenizer, **buster_cfg.documents_formatter_cfg
|
141 |
+
),
|
142 |
+
prompt_formatter=PromptFormatter(
|
143 |
+
tokenizer=tokenizer, **buster_cfg.prompt_formatter_cfg
|
144 |
+
),
|
145 |
+
**buster_cfg.documents_answerer_cfg,
|
146 |
+
)
|
147 |
+
validator: Validator = QuestionAnswerValidator(**buster_cfg.validator_cfg)
|
148 |
+
buster: Buster = Buster(
|
149 |
+
retriever=retriever, document_answerer=document_answerer, validator=validator
|
150 |
+
)
|
151 |
+
return buster
|
embed_documents.py
CHANGED
@@ -1,61 +1,25 @@
|
|
1 |
import openai
|
2 |
import pandas as pd
|
3 |
-
from
|
4 |
|
5 |
from utils import zip_contents
|
6 |
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
return
|
14 |
-
data["embedding"]
|
15 |
-
for data in openai.Embedding.create(input=texts, model=model)["data"]
|
16 |
-
]
|
17 |
-
|
18 |
-
|
19 |
-
def extract_metadata(df: pd.DataFrame) -> dict:
|
20 |
-
"""extract the metadata from the dataframe in deeplake dict format"""
|
21 |
-
metadata = df.apply(
|
22 |
-
lambda x: {
|
23 |
-
"url": x.url,
|
24 |
-
"source": x.source,
|
25 |
-
"title": x.title,
|
26 |
-
},
|
27 |
-
axis=1,
|
28 |
-
).to_list()
|
29 |
-
return metadata
|
30 |
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
vector_store_path = "deeplake_store"
|
34 |
-
chunk_file = "data/
|
35 |
overwrite = True
|
36 |
-
df =
|
37 |
-
|
38 |
-
for col in ["url", "source", "title", "content"]:
|
39 |
-
assert col in df.columns
|
40 |
-
|
41 |
-
# extract the text + metadata
|
42 |
-
metadata = extract_metadata(df)
|
43 |
-
chunked_text = df.content.to_list()
|
44 |
-
|
45 |
-
# init the vector store
|
46 |
-
vector_store = VectorStore(
|
47 |
-
path=vector_store_path,
|
48 |
-
overwrite=True,
|
49 |
-
)
|
50 |
-
|
51 |
-
# add the embeddings
|
52 |
-
vector_store.add(
|
53 |
-
text=chunked_text,
|
54 |
-
embedding_function=embedding_function,
|
55 |
-
embedding_data=chunked_text,
|
56 |
-
metadata=metadata,
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
-
|
|
|
61 |
print(f"Contents zipped to: {zipped_file_path}")
|
|
|
1 |
import openai
|
2 |
import pandas as pd
|
3 |
+
from buster.documents import DeepLakeDocumentsManager
|
4 |
|
5 |
from utils import zip_contents
|
6 |
|
7 |
|
8 |
+
def read_csv(filename: str):
|
9 |
+
"""Assumes a pre-chunked csv file is provided with expected columns."""
|
10 |
+
df = pd.read_csv(filename)
|
11 |
+
for col in ["url", "source", "title", "content"]:
|
12 |
+
assert col in df.columns
|
13 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
if __name__ == "__main__":
|
17 |
vector_store_path = "deeplake_store"
|
18 |
+
chunk_file = "data/outputs.csv"
|
19 |
overwrite = True
|
20 |
+
df = read_csv(chunk_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
dm = DeepLakeDocumentsManager(vector_store_path, overwrite=overwrite)
|
23 |
+
dm.add(df)
|
24 |
+
zipped_file_path = dm.to_zip()
|
25 |
print(f"Contents zipped to: {zipped_file_path}")
|
gradio_app.py
CHANGED
@@ -5,18 +5,20 @@ import gradio as gr
|
|
5 |
import pandas as pd
|
6 |
|
7 |
import cfg
|
8 |
-
from cfg import
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
|
13 |
-
USERNAME = os.getenv("BUSTER_USERNAME")
|
14 |
-
PASSWORD = os.getenv("BUSTER_PASSWORD")
|
15 |
-
|
16 |
|
17 |
def check_auth(username: str, password: str) -> bool:
|
18 |
-
valid_user = username == USERNAME
|
19 |
-
valid_password = password == PASSWORD
|
20 |
is_auth = valid_user and valid_password
|
21 |
logger.info(f"Log-in attempted by {username=}. {is_auth=}")
|
22 |
return is_auth
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
import cfg
|
8 |
+
from cfg import setup_buster
|
9 |
+
|
10 |
+
buster = setup_buster(cfg.buster_cfg)
|
11 |
+
|
12 |
+
# suppress httpx logs they are spammy and uninformative
|
13 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
14 |
|
15 |
logger = logging.getLogger(__name__)
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
def check_auth(username: str, password: str) -> bool:
|
20 |
+
valid_user = username == cfg.USERNAME
|
21 |
+
valid_password = password == cfg.PASSWORD
|
22 |
is_auth = valid_user and valid_password
|
23 |
logger.info(f"Log-in attempted by {username=}. {is_auth=}")
|
24 |
return is_auth
|
requirements.txt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
git+https://github.com/jerpint/buster@
|
2 |
gradio
|
3 |
deeplake
|
|
|
1 |
+
git+https://github.com/jerpint/buster@main
|
2 |
gradio
|
3 |
deeplake
|