Spaces:
Running
Running
add preprocess file (#2)
Browse files- data/preprocess_chunks.py +50 -0
data/preprocess_chunks.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
def combine(x):
|
5 |
+
x = x.dropna(subset="content")
|
6 |
+
return pd.DataFrame(
|
7 |
+
{
|
8 |
+
"content": " ".join(x.content.to_list()),
|
9 |
+
"url": x.source.unique()[0],
|
10 |
+
"source": "towardsai_blog",
|
11 |
+
"title": x.title.unique()[0],
|
12 |
+
},
|
13 |
+
index=[0],
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
# recombine the chunks
|
18 |
+
filename = "output.csv"
|
19 |
+
df = pd.read_csv(filename)
|
20 |
+
df_combined = df.groupby("ID").apply(func=combine)
|
21 |
+
df_combined = df_combined.reset_index()
|
22 |
+
|
23 |
+
df_combined = df_combined.drop(columns=["level_1"])
|
24 |
+
df_combined.to_csv("chunks_preprocessed_combined.csv", index=False)
|
25 |
+
|
26 |
+
# Naive splitting the content into multiple rows based on word count
|
27 |
+
MAX_WORDS = 500
|
28 |
+
new_rows = []
|
29 |
+
for index, row in df_combined.iterrows():
|
30 |
+
content = row["content"].split()
|
31 |
+
num_chunks = (
|
32 |
+
len(content) - 1
|
33 |
+
) // MAX_WORDS + 1 # Number of chunks based on MAX_WORDS
|
34 |
+
|
35 |
+
for i in range(num_chunks):
|
36 |
+
start_idx = i * MAX_WORDS
|
37 |
+
end_idx = (i + 1) * MAX_WORDS
|
38 |
+
new_content = " ".join(content[start_idx:end_idx])
|
39 |
+
new_row = row.copy()
|
40 |
+
new_row["content"] = new_content
|
41 |
+
new_rows.append(new_row)
|
42 |
+
|
43 |
+
# Creating a new DataFrame with the split rows
|
44 |
+
new_df = pd.DataFrame(new_rows)
|
45 |
+
new_df = new_df.reset_index()
|
46 |
+
|
47 |
+
# Drop a bunch of leftover useless columns
|
48 |
+
new_df = new_df.drop(columns=["index"])
|
49 |
+
|
50 |
+
new_df.to_csv("chunks_preprocessed.csv", index=False)
|