File size: 2,001 Bytes
2584554
 
ce191fc
 
 
 
2584554
ce191fc
 
2584554
6e91c12
ce191fc
 
 
 
 
31264bb
ce191fc
 
 
 
 
 
 
 
 
 
 
 
 
 
31264bb
2584554
 
ce191fc
 
 
 
2584554
 
ce191fc
6e4bedb
549b56e
6e4bedb
 
2584554
 
 
 
 
 
 
 
 
6e4bedb
2584554
 
6e4bedb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr  
from transformers import AutoModel, AutoTokenizer  
import torch  
import torchvision.transforms as T  
from torchvision.transforms.functional import InterpolationMode  
from Models.modeling_llavaqw import LlavaQwModel  

IMAGENET_MEAN = (0.485, 0.456, 0.406)  
IMAGENET_STD = (0.229, 0.224, 0.225)  

model_name = "torettomarui/Llava-qw"  
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)  
model = LlavaQwModel.from_pretrained(  
    model_name,  
    torch_dtype=torch.bfloat16,  
    trust_remote_code=True,  
).to(torch.bfloat16).eval().cuda()  

def build_transform(input_size):  
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD  
    transform = T.Compose([  
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),  
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),  
        T.ToTensor(),  
        T.Normalize(mean=MEAN, std=STD)  
    ])  
    return transform  

def preprocess_image(file_path, image_size=448):  
    transform = build_transform(image_size)  
    pixel_values = transform(file_path)  
    return torch.stack([pixel_values]).to(torch.bfloat16).cuda()  

def generate_response(image, text):  
    pixel_values = preprocess_image(image)  
    generation_config = dict(max_new_tokens=2048, do_sample=False)  
    question = '<image>\n' + text  
    response = model.chat(tokenizer, pixel_values, question, generation_config)  
    return response  

# 添加示例图像和文本  
examples = [  
    ["./text.png", "图中的文字是什么?"],
]  

iface = gr.Interface(  
    fn=generate_response,  
    inputs=[  
        gr.Image(type="pil", label="上传图片"),  
        gr.Textbox(lines=2, placeholder="输入你的问题..."),  
    ],  
    outputs="text",  
    title="Llava-QW",  
    description="上传一张图片并输入你的问题,模型将生成相应的回答。",  
    examples=examples  # 添加示例  
)  

iface.launch()