File size: 2,279 Bytes
5c01b87
 
2b61c31
 
5c01b87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b61c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c01b87
 
 
2b61c31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
from huggingface_hub import InferenceClient
import gen 
import psychohistory

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""


with gr.Blocks(title="PSYCHOHISTORY") as app:


    with gr.Tab("Search"):
        with gr.Row():
            txt_search = gr.Textbox(value="Iran and Israel war",label="Search Term",scale=5)
            btn_search = gr.Button("Look",scale=1)
        with gr.Row():
            #search_results = gr.Dataframe(type="pandas")
            mem_results = gr.JSON(label="Results")
            btn_search.click(
                gen.generate, 
                inputs=[txt_search],
                outputs=mem_results
            )  
            
        #with gr.Row():
        #    big_block = gr.HTML("""
         #       <iframe style="scroll-padding-left: 50%; relative;background-color: #fff; height: 75vh; width: 100%; overflow-y: hidden; overflow-x: hidden;" src="https://holmesbot.com/api/shared?id=16657e456d9514"></iframe>
         #   """)
        
    with gr.Tab("Graph"):
        gr.load("models/stabilityai/stable-diffusion-xl-base-1.0")
    with gr.Tab("Chat"):
        
        gr.ChatInterface(
            respond,
        )


if __name__ == "__main__":
    app.launch()