File size: 1,305 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import torch.nn.functional as F
from torch import nn


class CDistNetLoss(nn.Module):

    def __init__(self, smoothing=True, ignore_index=0, **kwargs):
        super(CDistNetLoss, self).__init__()
        if ignore_index >= 0 and not smoothing:
            self.loss_func = nn.CrossEntropyLoss(reduction='mean',
                                                 ignore_index=ignore_index)
        self.smoothing = smoothing

    def forward(self, pred, batch):
        pred = pred['res']
        tgt = batch[1][:, 1:]
        pred = pred.reshape([-1, pred.shape[2]])
        tgt = tgt.reshape([-1])
        if self.smoothing:
            eps = 0.1
            n_class = pred.shape[1]
            one_hot = F.one_hot(tgt.long(), num_classes=pred.shape[1])
            torch.set_printoptions(profile='full')
            one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
            log_prb = F.log_softmax(pred, dim=1)
            non_pad_mask = torch.not_equal(
                tgt, torch.zeros(tgt.shape, dtype=tgt.dtype,
                                 device=tgt.device))
            loss = -(one_hot * log_prb).sum(dim=1)
            loss = loss.masked_select(non_pad_mask).mean()
        else:
            loss = self.loss_func(pred, tgt)
        return {'loss': loss}