File size: 11,914 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from collections import OrderedDict
import torch
import torch.nn as nn


class IdentityLayer(nn.Module):

    def __init__(self):
        super(IdentityLayer, self).__init__()

    def forward(self, x):
        return x

    @staticmethod
    def is_zero_layer():
        return False


class ZeroLayer(nn.Module):

    def __init__(self, stride):
        super(ZeroLayer, self).__init__()
        self.stride = stride

    def forward(self, x):
        n, c, h, w = x.shape
        h //= self.stride[0]
        w //= self.stride[1]
        device = x.device
        padding = torch.zeros(n, c, h, w, device=device, requires_grad=False)
        return padding

    @staticmethod
    def is_zero_layer():
        return True

    def get_flops(self, x):
        return 0, self.forward(x)


def get_same_padding(kernel_size):
    if isinstance(kernel_size, tuple):
        assert len(kernel_size) == 2, 'invalid kernel size: %s' % kernel_size
        p1 = get_same_padding(kernel_size[0])
        p2 = get_same_padding(kernel_size[1])
        return p1, p2
    assert isinstance(kernel_size,
                      int), 'kernel size should be either `int` or `tuple`'
    assert kernel_size % 2 > 0, 'kernel size should be odd number'
    return kernel_size // 2


class MBInvertedConvLayer(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=(1, 1),
                 expand_ratio=6,
                 mid_channels=None):
        super(MBInvertedConvLayer, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.expand_ratio = expand_ratio
        self.mid_channels = mid_channels

        feature_dim = round(
            self.in_channels *
            self.expand_ratio) if mid_channels is None else mid_channels
        if self.expand_ratio == 1:
            self.inverted_bottleneck = None
        else:
            self.inverted_bottleneck = nn.Sequential(
                OrderedDict([
                    ('conv',
                     nn.Conv2d(self.in_channels,
                               feature_dim,
                               1,
                               1,
                               0,
                               bias=False)),
                    ('bn', nn.BatchNorm2d(feature_dim)),
                    ('act', nn.ReLU6(inplace=True)),
                ]))
        pad = get_same_padding(self.kernel_size)
        self.depth_conv = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(feature_dim,
                           feature_dim,
                           kernel_size,
                           stride,
                           pad,
                           groups=feature_dim,
                           bias=False)),
                ('bn', nn.BatchNorm2d(feature_dim)),
                ('act', nn.ReLU6(inplace=True)),
            ]))
        self.point_conv = nn.Sequential(
            OrderedDict([
                ('conv',
                 nn.Conv2d(feature_dim, out_channels, 1, 1, 0, bias=False)),
                ('bn', nn.BatchNorm2d(out_channels)),
            ]))

    def forward(self, x):
        if self.inverted_bottleneck:
            x = self.inverted_bottleneck(x)
        x = self.depth_conv(x)
        x = self.point_conv(x)
        return x

    @staticmethod
    def is_zero_layer():
        return False


def conv_func_by_name(name):
    name2ops = {
        'Identity': lambda in_C, out_C, S: IdentityLayer(),
        'Zero': lambda in_C, out_C, S: ZeroLayer(stride=S),
    }
    name2ops.update({
        '3x3_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 1),
        '3x3_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 2),
        '3x3_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 3),
        '3x3_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 4),
        '3x3_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 5),
        '3x3_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 6),
        #######################################################################################
        '5x5_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 1),
        '5x5_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 2),
        '5x5_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 3),
        '5x5_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 4),
        '5x5_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 5),
        '5x5_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 6),
        #######################################################################################
        '7x7_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 1),
        '7x7_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 2),
        '7x7_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 3),
        '7x7_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 4),
        '7x7_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 5),
        '7x7_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 6),
    })
    return name2ops[name]


def build_candidate_ops(candidate_ops, in_channels, out_channels, stride,
                        ops_order):
    if candidate_ops is None:
        raise ValueError('please specify a candidate set')

    name2ops = {
        'Identity':
        lambda in_C, out_C, S: IdentityLayer(in_C, out_C, ops_order=ops_order),
        'Zero':
        lambda in_C, out_C, S: ZeroLayer(stride=S),
    }
    # add MBConv layers
    name2ops.update({
        '3x3_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 1),
        '3x3_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 2),
        '3x3_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 3),
        '3x3_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 4),
        '3x3_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 5),
        '3x3_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 3, S, 6),
        #######################################################################################
        '5x5_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 1),
        '5x5_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 2),
        '5x5_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 3),
        '5x5_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 4),
        '5x5_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 5),
        '5x5_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 5, S, 6),
        #######################################################################################
        '7x7_MBConv1':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 1),
        '7x7_MBConv2':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 2),
        '7x7_MBConv3':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 3),
        '7x7_MBConv4':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 4),
        '7x7_MBConv5':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 5),
        '7x7_MBConv6':
        lambda in_C, out_C, S: MBInvertedConvLayer(in_C, out_C, 7, S, 6),
    })

    return [
        name2ops[name](in_channels, out_channels, stride)
        for name in candidate_ops
    ]


class MobileInvertedResidualBlock(nn.Module):

    def __init__(self, mobile_inverted_conv, shortcut):
        super(MobileInvertedResidualBlock, self).__init__()
        self.mobile_inverted_conv = mobile_inverted_conv
        self.shortcut = shortcut

    def forward(self, x):
        if self.mobile_inverted_conv.is_zero_layer():
            res = x
        elif self.shortcut is None or self.shortcut.is_zero_layer():
            res = self.mobile_inverted_conv(x)
        else:
            conv_x = self.mobile_inverted_conv(x)
            skip_x = self.shortcut(x)
            res = skip_x + conv_x
        return res


class AutoSTREncoder(nn.Module):

    def __init__(self,
                 in_channels,
                 out_dim=256,
                 with_lstm=True,
                 stride_stages='[(2, 2), (2, 2), (2, 1), (2, 1), (2, 1)]',
                 n_cell_stages=[3, 3, 3, 3, 3],
                 conv_op_ids=[5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 4, 3, 4, 6, 6],
                 **kwargs):
        super().__init__()
        self.first_conv = nn.Sequential(
            nn.Conv2d(in_channels,
                      32,
                      kernel_size=(3, 3),
                      stride=1,
                      padding=1,
                      bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True))
        stride_stages = eval(stride_stages)
        width_stages = [32, 64, 128, 256, 512]
        conv_candidates = [
            '5x5_MBConv1', '5x5_MBConv3', '5x5_MBConv6', '3x3_MBConv1',
            '3x3_MBConv3', '3x3_MBConv6', 'Zero'
        ]

        assert len(conv_op_ids) == sum(n_cell_stages)
        blocks = []
        input_channel = 32
        for width, n_cell, s in zip(width_stages, n_cell_stages,
                                    stride_stages):
            for i in range(n_cell):
                if i == 0:
                    stride = s
                else:
                    stride = (1, 1)
                block_i = len(blocks)
                conv_op = conv_func_by_name(
                    conv_candidates[conv_op_ids[block_i]])(input_channel,
                                                           width, stride)
                if stride == (1, 1) and input_channel == width:
                    shortcut = IdentityLayer()
                else:
                    shortcut = None
                inverted_residual_block = MobileInvertedResidualBlock(
                    conv_op, shortcut)
                blocks.append(inverted_residual_block)
                input_channel = width
        self.out_channels = input_channel

        self.blocks = nn.ModuleList(blocks)

        # with_lstm = False
        self.with_lstm = with_lstm
        if with_lstm:
            self.rnn = nn.LSTM(input_channel,
                               out_dim // 2,
                               bidirectional=True,
                               num_layers=2,
                               batch_first=True)
            self.out_channels = out_dim

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.first_conv(x)
        for block in self.blocks:
            x = block(x)
        cnn_feat = x.squeeze(dim=2)
        cnn_feat = cnn_feat.transpose(2, 1)
        if self.with_lstm:
            rnn_feat, _ = self.rnn(cnn_feat)
            return rnn_feat
        else:
            return cnn_feat