Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,832 Bytes
5a50d7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import time
import streamlit as st
import yfinance as yf
from functools import wraps
import pandas as pd
import numpy as np
import random
from datetime import datetime, timedelta
try:
import pandas_datareader.data as web
PANDAS_DATAREADER_AVAILABLE = True
except ImportError:
PANDAS_DATAREADER_AVAILABLE = False
st.warning("pandas_datareader not available. Install it with: pip install pandas-datareader")
class RateLimitManager:
"""Manages rate limiting for API calls"""
def __init__(self, min_delay=3.0):
self.min_delay = min_delay
self.last_call_time = 0
def wait_if_needed(self):
"""Ensure minimum delay between API calls"""
current_time = time.time()
time_since_last_call = current_time - self.last_call_time
if time_since_last_call < self.min_delay:
sleep_time = self.min_delay - time_since_last_call + random.uniform(0.5, 1.5)
time.sleep(sleep_time)
self.last_call_time = time.time()
# Global rate limit manager
rate_limiter = RateLimitManager()
def create_sample_data(ticker, period='1mo'):
"""Create sample data when API is unavailable"""
# Define sample data for common tickers
sample_data = {
'NVDA': {'base_price': 450, 'volatility': 0.03, 'trend': 0.001},
'AAPL': {'base_price': 190, 'volatility': 0.02, 'trend': 0.0005},
'GOOGL': {'base_price': 140, 'volatility': 0.025, 'trend': 0.0008},
'MSFT': {'base_price': 420, 'volatility': 0.02, 'trend': 0.0007},
'AMZN': {'base_price': 150, 'volatility': 0.025, 'trend': 0.0006}
}
# Get parameters for ticker or use defaults
params = sample_data.get(ticker, {'base_price': 100, 'volatility': 0.02, 'trend': 0.0005})
# Generate date range based on period
if period == 'max' or period == '1y':
days = 252
elif period == '6mo':
days = 126
elif period == '1mo':
days = 30
else:
days = 30
# Create date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
dates = pd.date_range(start=start_date, end=end_date, freq='D')
# Remove weekends
dates = dates[dates.weekday < 5]
# Generate price data
np.random.seed(42) # For consistent sample data
returns = np.random.normal(params['trend'], params['volatility'], len(dates))
prices = [params['base_price']]
for ret in returns[1:]:
prices.append(prices[-1] * (1 + ret))
# Create DataFrame
df = pd.DataFrame(index=dates[:len(prices)])
df['Close'] = prices
df['Open'] = df['Close'].shift(1).fillna(df['Close'])
df['High'] = df['Close'] * (1 + np.random.uniform(0, 0.02, len(df)))
df['Low'] = df['Close'] * (1 - np.random.uniform(0, 0.02, len(df)))
df['Volume'] = np.random.randint(1000000, 10000000, len(df))
return df
def retry_with_backoff(max_retries=5, base_delay=10):
"""Decorator for retrying functions with exponential backoff"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for attempt in range(max_retries):
try:
rate_limiter.wait_if_needed()
return func(*args, **kwargs)
except Exception as e:
error_msg = str(e).lower()
if any(keyword in error_msg for keyword in ['rate', 'limit', '429', 'too many requests']):
if attempt < max_retries - 1:
wait_time = base_delay * (2 ** attempt) + random.uniform(2, 5)
st.warning(f"π« Rate limit hit. Waiting {wait_time:.1f} seconds before retry {attempt + 2}/{max_retries}...")
time.sleep(wait_time)
continue
else:
st.error("β±οΈ Rate limit exceeded after all retries. Using sample data.")
return None
elif any(keyword in error_msg for keyword in ['expecting value', 'no timezone', 'delisted', 'json']):
if attempt < max_retries - 1:
wait_time = base_delay + random.uniform(2, 4)
st.warning(f"π Data parsing error. Retrying in {wait_time:.1f} seconds... (attempt {attempt + 2}/{max_retries})")
time.sleep(wait_time)
continue
else:
st.warning("β οΈ Unable to fetch real data. Using sample data for demonstration.")
return None
else:
if attempt < max_retries - 1:
wait_time = base_delay + random.uniform(1, 3)
st.warning(f"β Error: {str(e)[:100]}... Retrying in {wait_time:.1f} seconds...")
time.sleep(wait_time)
continue
else:
st.error(f"β Failed after {max_retries} attempts: {str(e)[:100]}...")
return None
return None
return wrapper
return decorator
def fetch_data_with_stooq(ticker_symbol, start_date=None, end_date=None, period='1mo'):
"""Fetch stock data using pandas_datareader with stooq as source"""
if not PANDAS_DATAREADER_AVAILABLE:
return None
try:
# Convert period to date range if start/end not provided
if start_date is None or end_date is None:
end_date = datetime.now()
if period == 'max' or period == '1y':
start_date = end_date - timedelta(days=365)
elif period == '6mo':
start_date = end_date - timedelta(days=180)
elif period == '1mo':
start_date = end_date - timedelta(days=30)
elif period == '5d':
start_date = end_date - timedelta(days=5)
else:
start_date = end_date - timedelta(days=30)
# Fetch data from stooq
df = web.DataReader(ticker_symbol, 'stooq', start_date, end_date)
if df.empty:
return None
# Stooq returns data in reverse chronological order, so sort it
df = df.sort_index()
# Ensure we have the required columns
required_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
if all(col in df.columns for col in required_columns):
return df
else:
st.warning(f"Missing columns in stooq data: {[col for col in required_columns if col not in df.columns]}")
return None
except Exception as e:
st.error(f"Error fetching data from stooq: {str(e)}")
return None
def safe_yfinance_call(ticker_symbol, operation='history', **kwargs):
"""Safely call multiple data sources with fallback to sample data"""
# First try stooq (pandas_datareader) for historical data
if operation == 'history' and PANDAS_DATAREADER_AVAILABLE:
try:
st.sidebar.info(f"π Trying stooq API for {ticker_symbol}...")
stooq_data = fetch_data_with_stooq(
ticker_symbol,
start_date=kwargs.get('start'),
end_date=kwargs.get('end'),
period=kwargs.get('period', '1mo')
)
if stooq_data is not None and not stooq_data.empty:
st.sidebar.success(f"β
Real data from stooq for {ticker_symbol}")
return stooq_data
else:
st.sidebar.warning(f"β οΈ Stooq failed for {ticker_symbol}")
except Exception as e:
st.sidebar.warning(f"β οΈ Stooq error: {str(e)[:50]}...")
# If stooq fails or for info operation, try yfinance as backup
try:
st.sidebar.info(f"π Trying yfinance API for {ticker_symbol}...")
ticker = yf.Ticker(ticker_symbol)
if operation == 'history':
result = ticker.history(
timeout=10,
prepost=False,
auto_adjust=True,
back_adjust=False,
repair=True,
keepna=False,
actions=False,
**kwargs
)
if result is not None and not result.empty and len(result) > 0:
st.sidebar.success(f"β
Real data from yfinance for {ticker_symbol}")
return result
else:
st.sidebar.warning(f"β οΈ yfinance returned empty data for {ticker_symbol}")
elif operation == 'info':
result = ticker.info
if result and isinstance(result, dict) and len(result) > 1:
st.sidebar.success(f"β
Info from yfinance for {ticker_symbol}")
return result
else:
st.sidebar.warning(f"β οΈ yfinance info empty for {ticker_symbol}")
else:
raise ValueError(f"Unsupported operation: {operation}")
except Exception as e:
st.sidebar.warning(f"β οΈ yfinance also failed: {str(e)[:50]}...")
# Finally fallback to sample data
if operation == 'history':
st.sidebar.warning(f"π Using sample data for {ticker_symbol}")
return create_sample_data(ticker_symbol, kwargs.get('period', '1mo'))
elif operation == 'info':
sample_prices = {
'NVDA': 450, 'AAPL': 190, 'GOOGL': 140, 'MSFT': 420, 'AMZN': 150
}
base_price = sample_prices.get(ticker_symbol, 100)
return {
'symbol': ticker_symbol,
'shortName': f'{ticker_symbol} Inc.',
'currentPrice': base_price + random.uniform(-2, 2),
'previousClose': base_price
}
else:
raise Exception(f"All data sources failed for {ticker_symbol}")
def get_cached_data(cache_key, ttl_seconds=300):
"""Get cached data from session state if still valid"""
if cache_key in st.session_state:
cache_time_key = f"cache_time_{cache_key}"
if cache_time_key in st.session_state:
cache_time = st.session_state[cache_time_key]
if time.time() - cache_time < ttl_seconds:
return st.session_state[cache_key]
return None
def set_cached_data(cache_key, data):
"""Cache data in session state with timestamp"""
st.session_state[cache_key] = data
st.session_state[f"cache_time_{cache_key}"] = time.time()
def clear_cache(pattern=None):
"""Clear cached data matching pattern"""
if pattern is None:
# Clear all cache
keys_to_remove = [key for key in st.session_state.keys()
if key.startswith('cache_time_') or key.startswith('data_')]
else:
keys_to_remove = [key for key in st.session_state.keys() if pattern in key]
for key in keys_to_remove:
del st.session_state[key]
return len(keys_to_remove)
def format_error_message(error):
"""Format error messages for better user experience"""
error_str = str(error).lower()
if "rate" in error_str or "limit" in error_str:
return ("π« **Rate Limit Exceeded**\n\n"
"Yahoo Finance has temporarily limited your requests. This happens when too many requests are made in a short time.\n\n"
"**What you can do:**\n"
"- Wait 5-10 minutes before trying again\n"
"- Use the cached data if available\n"
"- Try a different stock ticker\n\n"
"The app will automatically retry with delays between requests.")
elif "network" in error_str or "connection" in error_str:
return ("π **Network Error**\n\n"
"There seems to be a connectivity issue.\n\n"
"**What you can do:**\n"
"- Check your internet connection\n"
"- Try refreshing the page\n"
"- Wait a moment and try again")
else:
return f"β **Error**: {str(error)}"
def display_cache_info():
"""Display cache information in sidebar"""
with st.sidebar:
with st.expander("Cache Information"):
cache_items = [key for key in st.session_state.keys()
if key.startswith('data_') or key.startswith('model_data_')]
if cache_items:
st.write(f"**Cached items:** {len(cache_items)}")
for item in cache_items[:5]: # Show first 5 items
cache_time_key = f"cache_time_{item}"
if cache_time_key in st.session_state:
cache_time = st.session_state[cache_time_key]
age_minutes = (time.time() - cache_time) / 60
st.write(f"β’ {item.replace('data_', '')}: {age_minutes:.1f}m ago")
if len(cache_items) > 5:
st.write(f"... and {len(cache_items) - 5} more")
if st.button("Clear All Cache"):
cleared = clear_cache()
st.success(f"Cleared {cleared} cached items")
st.experimental_rerun()
else:
st.write("No cached data")
|